Skip to main content
Log in

Monitoring Biodegradation of Magnesium Implants with Sensors

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium and its alloys exhibit properties such as high strength, light weight, and in vivo corrosion that make them promising candidates for the development of biodegradable metallic implant materials for bone repair, stents and other medical applications. Sensors have been used to monitor the corrosion of magnesium and its alloys by measuring the concentrations of the following corrosion products: magnesium ions, hydroxyl ions and hydrogen gas. The corrosion characterization system with home-made capillary pH and Mg2+ microsensors has been developed for real-time detection of magnesium corrosion in vitro. A hydrogen gas sensor was used to monitor the corrosion of magnesium by measuring the concentration of the hydrogen gas reaction product in vivo. The high permeability of hydrogen through skin allows transdermal monitoring of the biodegradation of a magnesium alloy implanted beneath the skin by detecting hydrogen gas at the skin surface. The sensor was used to map hydrogen concentration in the vicinity of an implanted magnesium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.K. Seal, K. Vince, M.A. Hodgson, and I.O.P. Conf, IOP Conf. Ser. 4, 012011 (2009).

    Article  Google Scholar 

  2. E. Poinern, S. Brundavanam, and D. Fawcett, Am. J. Biomed. Eng. 2, 218 (2012).

    Article  Google Scholar 

  3. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  4. P.R. Cha, H.S. Han, G. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, and H.K. Seok, Sci. Rep. 3, 2367 (2013).

    Article  Google Scholar 

  5. M. Razavi, M.H. Fathi, and M. Meratian, Mat. Sci. Eng. A 527, 6938 (2010).

    Article  Google Scholar 

  6. A. Feng and Y. Han, J. Alloy. Compd. 504, 585 (2010).

    Article  Google Scholar 

  7. N.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, and A. Lewenstam, Clin. Chim. Acta 294, 1 (2000).

    Article  Google Scholar 

  8. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, J. Biomed. Mater. Res. 62, 175 (2002).

    Article  Google Scholar 

  9. Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, and N. Matsuura, J. Biomed. Mater. Res. 62, 99 (2002).

    Article  Google Scholar 

  10. Y. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta, and C. Sfeir, Mat. Sci. Eng. C 29, 1814 (2009).

    Article  Google Scholar 

  11. N.Z. Abidin, D. Martin, and A. Atrens, Corros. Sci. 53, 862 (2011).

    Article  Google Scholar 

  12. G. Song, A. Atrens, and D. StJohn, Magnes. Technol. 2001, 255 (2001).

    Google Scholar 

  13. G. Song and S. Song, Adv. Eng. Mater. 9, 298 (2007).

    Article  Google Scholar 

  14. R. Willumeit, J. Fischer, F. Feyerabend, N. Hort, U. Bismayer, S. Heidrich, and B. Mihailova, Acta Biomater. 7, 2704 (2011).

    Article  Google Scholar 

  15. A. Yamamoto and S. Hiromoto, Mat. Sci. Eng. C 29, 1559 (2009).

    Article  Google Scholar 

  16. M.B. Kannan and R.K.S. Raman, Biomaterials 29, 2306 (2008).

    Article  Google Scholar 

  17. L. Yang, Y. Wei, L. Hou, and D. Zhang, Corros. Sci. 52, 345 (2010).

    Article  Google Scholar 

  18. J.E. Gray-Munro, C. Seguin, and M. Strong, J. Biomed. Mater. Res. A. 91A, 221 (2009).

    Article  Google Scholar 

  19. A. Doepke, J. Kuhlmann, X. Guo, R.T. Voorhees, and W.R. Heineman, Acta Biomater. 9, 9211 (2013).

    Article  Google Scholar 

  20. X. Guo, T. Meyung, Y. Yun, V.N. Shanov, H.B. Halsall, and W.R. Heineman, Electroanalysis 24, 2045 (2012).

    Article  Google Scholar 

  21. J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Hoche, W.R. Heineman, and F. Witte, Acta Biomater. 9, 8714 (2013).

    Article  Google Scholar 

  22. W.R. Heineman, T. Wang, D. Zhao, J. Kuhlmann, Z. Dong, V.N. Shanov, D. Chou, D. Hong, P.N. Kumta, and Y. Yun, Pittcon 2015 (New Orleans, Louisiana, unpublished research, 2015).

  23. T. Wang, D. Zhao, Z. Dong, V.N. Shanov, Y. Yun, P.N. Kumta, and W.R. Heineman, Pittcon 2015 (New Orleans, Louisiana, unpublished research, 2015).

  24. W.R. Heineman, T. Wang, D. Zhao, and Z. Dong, 250th American Chemical Society National Meeting (Boston, Massachusetts, unpublished research, 2015).

  25. W.R. Heineman, J. Kuhlmann, X. Guo, A. Doepke, T. Wang, K. Ojo, R.T. Voorhees, S.K. Pixley, Z. Dong, V.N. Shanov, and F. Witte, Pittcon 2014 (Chicago, Illinois, unpublished research, 2014).

  26. Y. Song, D. Shan, R. Chen, F. Zhang, and E. Han, Mat. Sci. Eng. C 29, 1039 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the National Science Foundation (NSF ERC 0812348) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Heineman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, T., Guo, X. et al. Monitoring Biodegradation of Magnesium Implants with Sensors. JOM 68, 1204–1208 (2016). https://doi.org/10.1007/s11837-015-1775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1775-z

Keywords

Navigation