, Volume 68, Issue 3, pp 831–841 | Cite as

Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

  • Hadi Miyanaji
  • Shanshan Zhang
  • Austin Lassell
  • Amirali Zandinejad
  • Li Yang


Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process–property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.



The authors are grateful of the support from Rapid Prototyping Center (RPC) at University of Louisville and ExOne Co. Ltd.


  1. 1.
    M.N. Rahaman, Ceramic Processing and Sintering (New York, NY: Marcel Dekker, 1995).Google Scholar
  2. 2.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. (New York: Wiley, 1975).Google Scholar
  3. 3.
    E.C. Hammel, O.L.-R. Ighodaro, and O.I. Okoli, Ceram. Int. 40, 15351 (2014).CrossRefGoogle Scholar
  4. 4.
    D.W. Jones, Dent Clin. North Am. 29, 621 (1985).Google Scholar
  5. 5.
    M.M. Barreiro, O. Riesgo, and E.E. Vicente, Dent. Mater. 5, 51 (1989).CrossRefGoogle Scholar
  6. 6.
    W.J. O’Brien, Dental Materials: Properties and Selection (Chicago: Quintessence, 1989).Google Scholar
  7. 7.
    A. Tsetsekou, C. Agrafiotis, and A. Milias, J. Eur. Ceram. Soc. 21, 363 (2001).CrossRefGoogle Scholar
  8. 8.
    I. Denry and J.A. Holloway, Materials 3, 351 (2010).CrossRefGoogle Scholar
  9. 9.
    E.D. Rekow, N.R.F.A. Silva, P.G. Coelho, Y. Zhang, P. Guess, and V.P. Thompson, J. Dent. Res. 90, 937 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Ebert, E. Ozkol, A. Zeichner, K. Uibel, O. Weiss, U. Koops, R. Telle, and H. Fischer, J. Dent. Res. 88, 673 (2009).CrossRefGoogle Scholar
  11. 11.
    X. Li, J. Wang, A. Augustine, L.L. Shaw, and H.L. Marcus, in Proc. Solid Freeform Fab. Symp. (2001).Google Scholar
  12. 12.
    J. Wang, X. Li, L.L. Shaw, and H.L. Marcus, in Proc. Solid Freeform Fab. Symp. (2002)Google Scholar
  13. 13.
    N.R.F.A. Silva, L. Witek, P.G. Coelho, V.P. Thompson, E.D. Rekow, and J. Smay, J. Prosthodontics 20, 93 (2011).CrossRefGoogle Scholar
  14. 14.
    M.L. Schulman, and C. Panzera, Solid free-form fabrication methods for the production of dental restorations, US6808659 B2 (2004).Google Scholar
  15. 15.
    A.M. Waetjen, D.A. Polsakiewicz, I. Kuhl, R. Telle, and H. Fischer, J. Eur. Ceram. Soc. 29, 1 (2009).CrossRefGoogle Scholar
  16. 16.
    Ph Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov, Appl. Surf. Sci. 254, 989 (2007).CrossRefGoogle Scholar
  17. 17.
    H.S. Tsung-Jung and L. Wei-Hsiang, J. Chin. Inst. Eng. 33, 121 (2010).CrossRefGoogle Scholar
  18. 18.
    T.M. Liou, K.C. Shih, S.W. Chau, and S.C. Chen, Int. Commun. Heat Mass Transf. 29, 1109 (2002).CrossRefGoogle Scholar
  19. 19.
    S. Stopp, T. Wolff, F. Irlinger, and T. Lueth, Rapid Prototyp. J. 14, 167 (2008).CrossRefGoogle Scholar
  20. 20.
    M. Lanzetta and E. Sachs, Rapid Prototyp. J. 9, 157 (2003).CrossRefGoogle Scholar
  21. 21.
    N. Ramakrishnan, P.K. Rajesh, P. Ponnambalam, and K. Prakasan, J. Mater. Process. Technol. 169, 372 (2005).CrossRefGoogle Scholar
  22. 22.
    B. Utela, R.L. Anderson, and H. Kuhn, in Proc. Solid Freeform Fab. Symp. (2006)Google Scholar
  23. 23.
    D. Dimitrov, W.V. Wijck, K. Schreve, and N.D. Beer, Rapid Prototyp. J. 12, 42 (2006).CrossRefGoogle Scholar
  24. 24.
    M.J. Cima, M. Oliveira, H.R. Wang, E. Sachs, and R. Holman, in Proc. Solid Freeform Fab. Symp. (2001)Google Scholar
  25. 25.
    M. Vaezi and C.K. Chua, Int. J. Adv. Manuf. Technol. 53, 275 (2010).CrossRefGoogle Scholar
  26. 26.
    C. Lam, X.M. Mo, S.H. Teoh, and D.W. Hutmacher, Mater. Sci. Eng., C 20, 49 (2002).CrossRefGoogle Scholar
  27. 27.
    K. Lu and W.T. Reynolds, Powder Technol. 187, 11 (2008).CrossRefGoogle Scholar
  28. 28.
    S.M. Gaytan, M.A. Cadena, H. Karim, D. Delfin, Y. Lin, D. Espalin, E. MacDonald, and R.B. Wicker, Ceram. Int. 41, 6610 (2015).CrossRefGoogle Scholar
  29. 29.
    S. Hermann, R. Wolfgang, I. Stephan, L. Barbara, and T. Carsten, J. Biomed. Mater. Res. B. 74, 782 (2005).Google Scholar
  30. 30.
    L. Yang, S. Zhang, G. Oliveira, and B. Stucker, in Proc. Solid Freeform Fab. Symp. (2013)Google Scholar
  31. 31.
    M.A. Eydivand, M. Solati, A. Farzad, and N.A.A. Osman, Robot. Cim. Int. Manuf. 37, 57 (2015).CrossRefGoogle Scholar
  32. 32.
    R. Chumnanklang, T. Panyathanmaporn, K. Sitthiseripratip, and J. Suwanprateeb, Mater. Sci. Eng., C 27, 914 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Hadi Miyanaji
    • 1
  • Shanshan Zhang
    • 1
  • Austin Lassell
    • 1
  • Amirali Zandinejad
    • 2
  • Li Yang
    • 1
  1. 1.Department of Industrial EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Baylor College of DentistryTexas A&M UniversityDallasUSA

Personalised recommendations