Skip to main content
Log in

Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500–1100 MPa; hardness: 25–39 HRC; elongation: 10–25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Simchi and H. Pohl, Mater. Sci. Eng. A 383, 191 (2004).

    Article  Google Scholar 

  2. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, J. Mater. Process. Technol. 111, 210 (2001).

    Article  Google Scholar 

  3. S.S. Dimov, D.T. Pham, F. Lacan, and K.D. Dotchev, Assembly Autom. 21, 296 (2001).

    Article  Google Scholar 

  4. D. King and T. Tansey, J. Mater. Process. Technol. 121, 313 (2002).

    Article  Google Scholar 

  5. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Mater. Process. Technol. 149, 616 (2004).

    Article  Google Scholar 

  6. D. Atkinson, Rapid Prototyping and Tooling: A Practical Guide (Herts: Strategy Publication, 1997).

    Google Scholar 

  7. H.J. Niu and I.T.H. Chang, Scripta Mater. 41, 25 (1999).

    Article  Google Scholar 

  8. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo, J. Mater. Res. Technol. 1, 167 (2012).

    Article  Google Scholar 

  9. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon, Acta Mater. 51, 1651 (2003).

    Article  Google Scholar 

  10. G.B. Prabhu and D.L. Bourell, in Proc. Solid Freeform Fabr. Symp., (1993), p. 317.

  11. K.W. Dalgarno and C.S. Wright, Powder Met. Prog. 1, 70 (2001).

    Google Scholar 

  12. A. Simchi and H. Pohl, Mater. Sci. Eng. A 359, 119 (2003).

    Article  Google Scholar 

  13. G. Sun, R. Zhou, J. Lud, and J. Mazumder, Acta Mater. 84, 172 (2015).

    Article  Google Scholar 

  14. A. Simchi and H. Pohl, Mater. Sci. Eng. A 383, 191 (2004).

    Article  Google Scholar 

  15. A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).

    Article  Google Scholar 

  16. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, Appl. Surf. Sci. 256, 4350 (2001).

    Article  Google Scholar 

  17. H.J. Niu and I.T.H. Chang, Scripta Mater. 41, 25 (1999).

    Article  Google Scholar 

  18. R.M. German, Powder Metallurgy of Iron and Steel (New York: Wiley & Sons, Inc., 1998), p. 393.

    Google Scholar 

  19. L. Tyler, T. Nakamoto, K. Horikawa, and H. Kobayashi, Mater. Des. 81, 44 (2015).

    Article  Google Scholar 

  20. A. Gratton, Proceedings of the National Conference of Undergraduate Research (2012).

  21. L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, and R.B. Wicker, J. Mater. Res. Technol. 1, 42 (2012).

    Article  Google Scholar 

  22. S. Kumpaty, S. Kamara, B. Tomlin, J. Yoo, H. Kumpaty, D. Anderson, M. Govindaraju, K. Nitin, and K. Balasubramanian, Adv. Mater. Res. 699, 795 (2013).

    Article  Google Scholar 

  23. T. Lore, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  24. G. Hengfeng, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, in Proc. Solid Freeform Fabr. Symp., (2013), p. 474.

  25. A. Simchi and H. Asgharzadeh, Mater. Sci. Technol 20, 1462 (2004).

    Article  Google Scholar 

  26. A.B. Spierings, G. Levy, and K. Wegener, Proceedings of Solid Freeform Fabrication Symposium, 2012 (2014).

Download references

Acknowledgement

The authors thank the Walmart Foundation for funding the research project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundar V. Atre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irrinki, H., Dexter, M., Barmore, B. et al. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel. JOM 68, 860–868 (2016). https://doi.org/10.1007/s11837-015-1770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1770-4

Navigation