, Volume 68, Issue 3, pp 778–790 | Cite as

Understanding the Microstructure Formation of Ti-6Al-4V During Direct Laser Deposition via In-Situ Thermal Monitoring

  • Garrett J. Marshall
  • W. Joseph YoungII
  • Scott M. Thompson
  • Nima Shamsaei
  • Steve R. Daniewicz
  • Shuai Shao


Understanding the thermal phenomena associated with direct laser deposition (DLD) is an important step toward obtaining ‘process–property–performance’ relationships for various designed parts and materials, as well as achieving increased process control for meeting application constraints. In this study, a thermally monitored laser engineered net shaping (LENS™) system was used with time-invariant (uncontrolled) build parameters to construct Ti-6Al-4V cylinders. During fabrication, the part’s thermal history and melt pool temperature were recorded via an in-chamber infrared camera and a dual-wavelength pyrometer, respectively. These tools demonstrate the use of non-destructive thermographic inspection for ensuring target part quality and/or microstructure. For the chosen part geometry, the melt pool was found to be approximately 40%–50% superheated during DLD, reaching temperatures as high as 2500°C. Temperature gradients varied and peaked around 1000°C/mm along the diameter of the relatively small cylinders. Cooling rates within the melt pool were found to increase as maximum melt pool temperature increased, for instance, from 12,000°C/s to 25,000°C/s. The post-DLD Ti-6Al-4V microstructure was found to vary from columnar near the substrate, or substrate-affected zone, to equiaxed approximately 2–3 mm from the substrate. Bulk heating of the part due to successive layer deposits was shown to promote α″ to an α + β decomposition, while prior-β grains were observed near and far from the substrate.



The research presented here, including all fabrication and experimentation, was conducted at Mississippi State University’s Center for Advanced Vehicular Systems (CAVS).


  1. 1.
    M.L. Griffith, D.M. Keicher, C.L. Atwood, J.A. Romero, J.E. Smugeresky, L.D. Harwell, and D.L. Greene, in Proc. 7th Solid Free. Fabr. Symp. (1995), pp. 125–132.Google Scholar
  2. 2.
    J.E. Smugeresky, D.M. Keicher, J.A. Romero, M.L. Griffith, and L.D. Harwell, in World Congr. Powder Met. Part. Mater. (Chicago, IL, 1997).Google Scholar
  3. 3.
    M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, M. Essien, J. Brooks, C.V. Robino, J.E. Smugeresky, W.H. Hofmeister, M.J. Wert, and D.V. Nelson, Mater. Des. 20, 107 (1999).CrossRefGoogle Scholar
  4. 4.
    M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V Robino, J.A. Brooks, J.Philliber, J.E. Smugeresky, and W.H. Hofmeister, in Mater. Res. Soc. Proc. (2000).Google Scholar
  5. 5.
    F.P. Jeantette, D.M. Keicher, J.A. Romero, and L.P. Schanwald, Patent #: US006046426A (2000).Google Scholar
  6. 6.
    U. Articek, M. Milfelner, and I. Anzel, Adv. Prod. Eng. Manag. 8, 169 (2013).Google Scholar
  7. 7.
    F. Wang, J. Mei, and X. Wu, J. Mater. Process. Technol. 195, 321 (2008).CrossRefGoogle Scholar
  8. 8.
    W. Liu and J.N. DuPont, Scr. Mater. 48, 1337 (2003).CrossRefGoogle Scholar
  9. 9.
    A. Bandyopadhyay, B.V. Krishna, W. Xue, and S. Bose, J. Mater. Sci. Mater. Med. 20, S29 (2009).CrossRefGoogle Scholar
  10. 10.
    N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).CrossRefGoogle Scholar
  11. 11.
    A.R. Nassar, J.S. Keist, E.W. Reutzel, and T.J. Spurgeon, Addit. Manuf. 6, 39 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Tang and R.G. Landers, ASME J. Manuf. Sci. Eng. 132, 011011 (2010).CrossRefGoogle Scholar
  13. 13.
    L. Wang, S.D. Felicelli, and J.E. Craig, in Proc. 12th Solid Free. Fabr. Symp. (2007), pp. 100–111.Google Scholar
  14. 14.
    S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, Addit. Manuf. 8, 36 (2015).CrossRefGoogle Scholar
  15. 15.
    V. Neela and A. De, Int. J. Adv. Manuf. Technol. 45, 935 (2009).CrossRefGoogle Scholar
  16. 16.
    L. Wang and S. Felicelli, Mater. Sci. Eng. A 435–436, 625 (2006).CrossRefGoogle Scholar
  17. 17.
    G.J. Marshall, W.J. Young II, N. Shamsaei, J.Craig, T. Wakeman, and S.M. Thompson, in Proc. 26th Solid Free. Fabr. Symp. (Austin, USA, 2015).Google Scholar
  18. 18.
    M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, E. Smugeresky, M. Essien, J. Brooks, C.V Robino, and D.V Nelson, in Proc. 9th Solid Free. Fabr. Symp. Austin, USA (1998), pp. 89–96.Google Scholar
  19. 19.
    R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, Mater. Sci. Eng. A 428, 47 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Gaumann, C. Bezencon, P. Canalis, and W. Kurz, Acta Mater. 49, 1051 (2001).CrossRefGoogle Scholar
  21. 21.
    W. Hofmeister, M. Wert, J.E. Smugeresky, J.A. Philliber, and M.L. Griffith, JOM 51, 6 (1999).Google Scholar
  22. 22.
    L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, Mater. Sci. Eng. A 474, 148 (2008).CrossRefGoogle Scholar
  23. 23.
    J.E. Craig, T. Wakeman, R. Grylls, and J. Bullen, Sensors, Sampling, and Simulation for Process Control, ed. B.G. Thomas, J.A. Yurko, and L. Zhang (Hoboken, NJ: John Wiley & Sons, Inc., 2011), chap. 12. doi: 10.1002/9781118061800.ch12.
  24. 24.
    G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Surf. Coatings Technol. 201, 2676 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Ocylok, E. Alexeev, S. Mann, A. Weisheit, K. Wissenbach, and I. Kelbassa, Phys. Procedia 56, 228 (2014).CrossRefGoogle Scholar
  26. 26.
    S. Liu, P. Farahmand, and R. Kovacevic, Opt. Laser Technol. 64, 363 (2014).CrossRefGoogle Scholar
  27. 27.
    G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Appl. Surf. Sci. 253, 1411 (2006).CrossRefGoogle Scholar
  28. 28.
    G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Opt. Lasers Eng. 44, 1348 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Yang, S. Sun, M. Brandt, and W. Yan, J. Mater. Process. Technol. 210, 2215 (2010).CrossRefGoogle Scholar
  30. 30.
    R.A. Wood and R.J. Favor, Titanium Alloys Handbook (Air Force Materials Laboratory, Wright-Patterson Air Force Base, Department of Defense Information Analysis Center, Ohio, 1972).Google Scholar
  31. 31.
    M. Labudovic and R. Kovacevic, in Inst. Mech. Eng. (2000), pp. 315–340.Google Scholar
  32. 32.
    M. Boivineau, Int. J. Thermophys. 27, 507 (2006).CrossRefGoogle Scholar
  33. 33.
    M. Doubenskaia, M. Pavlov, S. Grigoriev, and I. Smurov, Surf. Coatings Technol. 220, 244 (2013).CrossRefGoogle Scholar
  34. 34.
    E. Rodriguez, J. Mireles, C.A. Terrazas, D. Espalin, M.A. Perez, and R.B. Wicker, Addit. Manuf. 5, 31 (2015).CrossRefGoogle Scholar
  35. 35.
    T. Purtonen, A. Kalliosaari, and A. Salminen, Phys. Procedia 56, 1218 (2014).CrossRefGoogle Scholar
  36. 36.
    P. Hagqvist, F. Sikström, and A.K. Christiansson, Meas. J. Int. Meas. Confed. 46, 871 (2013).CrossRefGoogle Scholar
  37. 37.
    L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67, 629 (2015).CrossRefGoogle Scholar
  38. 38.
    B. Torries, A. Sterling, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, J. Rapid Prototyp. 22, Special Issue of 2015 SFF Symposium (2016).Google Scholar
  39. 39.
    A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, in 26th Solid Free. Fabr. Symp. (Austin, TX, 2015).Google Scholar
  40. 40.
    M. Yan and P. Yu, in Sinter. Tech. Mater., edited by A. Lakshmanan (INTECH, 2015), pp. 77–106.Google Scholar
  41. 41.
    T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, J. Alloys Compd. 632, 505 (2015).CrossRefGoogle Scholar
  42. 42.
    P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Technol. 135 (2–3), 330 (2003). doi: 10.1016/S0924-0136(02)00865-8.
  43. 43.
    P.A. Kobryn, E.H. Moore, and S.L. Semiatin, Scr. Mater. 43, 299 (2000).CrossRefGoogle Scholar
  44. 44.
    A. Bagheri, S. M. Thompson, and N. Shamsaei, in ASME Int. Mech. Eng. Congr. Expo. (Houston, TX, 2015).Google Scholar
  45. 45.
    A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A (2016). doi: 10.1016/j.msea.2015.12.026.
  46. 46.
    S.A. Miller, P.R. Roberts, and A.S.M. Handbook, Powder Met. Technol. Appl. 7, 97 (1990).Google Scholar
  47. 47.
    A. Sterling, N. Shamsaei, B. Torries, and S.M. Thompson, in 6th Int. Conf. Fatigue Des. (Senlis, France, 2015).Google Scholar
  48. 48.
    S.R. Daniewicz, Fatigue Fract. Eng. Mater. Struct. 22 (4), 273 (1999). doi: 10.1046/j.1460-2695.1999.00164.x.
  49. 49.
    B. Taylor and E. Weidmann, Application Notes—Metallagraphic Preparation of Titanium (Denmark: Struers, 2015).
  50. 50.
    Matweb: Material Property Data, TIMET 6-4 Titanium Alloy (Ti-6Al-4V; ASTM Grade 5) Rod (2015). Accessed Dec 2015.
  51. 51.
    D.P. Kennedy, J. Appl. Phys. 31, 1490 (1960).CrossRefGoogle Scholar
  52. 52.
    J. Gockel and J. Beuth, in Solid Free. Fabr. Symp. (Austin, TX, 2013), pp. 666–674.Google Scholar
  53. 53.
    J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, in Titan. Alloy.Adv. Prop. Control, edited by J. Sieniawski and W. Ziaja (INTECH, 2013), pp. 70–80.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Garrett J. Marshall
    • 1
  • W. Joseph YoungII
    • 1
  • Scott M. Thompson
    • 1
    • 2
  • Nima Shamsaei
    • 1
    • 2
  • Steve R. Daniewicz
    • 1
    • 2
  • Shuai Shao
    • 2
  1. 1.Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA

Personalised recommendations