, Volume 68, Issue 3, pp 1037–1045 | Cite as

Effect of Withdrawal Rate and Gd on the Microstructures of Directionally Solidified NiAl-Cr(Mo) Hypereutectic Alloy

  • Lei Wang
  • Jun Shen
  • Yun-Peng Zhang
  • Lan-Lan Guo


The microstructures of Ni-31Al-32Cr-6Mo-xGd hypereutectic alloy were investigated at the withdrawal rates of 10 μm/s, 30 μm/s, and 90 μm/s. For the Gd-free hypereutectic alloy, the Cr(Mo) primary dendrites appear at the beginning of solidification when the withdrawal rate is 10 μm/s. As the solidification proceeds, the Cr(Mo) primary dendrite is eliminated, and the fully eutectic structure can be obtained in the steady-state zone. With increasing the withdrawal rate, the Cr(Mo) primary dendrites decrease gradually, and vanish at 90 μm/s. In addition, at a moderate withdrawal rate (30 μm/s), an optimum addition of Gd content (0.1 wt.%) results in the refinement of the microstructure, including the refinement of the eutectic cells and the intercellular region. Meanwhile, the new white phase ((Al x Gd1−x )2O3) appears in the boundary of the eutectic cells when the Gd content is not less than 0.1 wt.%.



The work is supported by the National Natural Science Foundation of China (No. 51501147), the doctoral starting fund of Xi’an University of Technology (101-451115004), the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201509) and National Nature Science Foundation of China (No. 51074128).


  1. 1.
    R.D. Noebe, R.R. Bowman, and M.V. Nathal, Int. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar
  2. 2.
    D.B. Miracle, Acta Metall. Mater. 41, 649 (1993).CrossRefGoogle Scholar
  3. 3.
    R. Darolia, JOM 43, 44 (1991).CrossRefGoogle Scholar
  4. 4.
    A. Misra and R. Gibala, Intermetallics 8, 1025 (2000).CrossRefGoogle Scholar
  5. 5.
    X.F. Chen, D.R. Johnson, R.D. Noebe, and B.F. Oliver, J. Mater. Res. 10, 1159 (1995).CrossRefGoogle Scholar
  6. 6.
    J.D. Whittenberger, S.V. Raj, I.E. Locci, and J.A. Salem, Intermetallics 7, 1159 (1999).CrossRefGoogle Scholar
  7. 7.
    J.M. Yang, JOM 49, 40 (1997).CrossRefGoogle Scholar
  8. 8.
    J.M. Yang, S.M. Jeng, K. Bain, and R.A. Amato, Acta Mater. 45, 295 (1997).CrossRefGoogle Scholar
  9. 9.
    C.Y. Cui, Y.X. Chen, J.T. Guo, D.X. Li, and H.Q. Ye, Mater. Lett. 43, 303 (2000).CrossRefGoogle Scholar
  10. 10.
    J.T. Guo, C.Y. Cui, Y.X. Chen, D.X. Li, and H.Q. Ye, Intermetallics 9, 287 (2001).CrossRefGoogle Scholar
  11. 11.
    C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye, Scripta Mater. 44, 2437 (2001).CrossRefGoogle Scholar
  12. 12.
    Y.X. Chen, C.Y. Cui, J.T. Guo, and D.X. Li, Mater. Sci. Eng. A 373, 279 (2004).CrossRefGoogle Scholar
  13. 13.
    C.Y. Cui, J.T. Guo, and H.Q. Ye, J. Alloys Compd. 463, 263 (2008).CrossRefGoogle Scholar
  14. 14.
    S.V. Raj, I.E. Locci, J.A. Salem, and R.J. Pawlik, Metall. Mater. Trans. A 33, 597 (2002).CrossRefGoogle Scholar
  15. 15.
    D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, Intermetallics 3, 99 (1995).CrossRefGoogle Scholar
  16. 16.
    A. Misra, R. Gibala, and R.D. Noebe, Intermetallics 9, 971 (2001).CrossRefGoogle Scholar
  17. 17.
    Z. Shang, J. Shen, J.F. Zhang, L. Wang, and H.Z. Fu, Intermetallics 22, 99 (2012).CrossRefGoogle Scholar
  18. 18.
    L.Y. Sheng, L.J. Wang, T.F. Xi, Y.F. Zheng, and H.Q. Ye, Mater. Des. 32, 4810 (2011).CrossRefGoogle Scholar
  19. 19.
    L.Y. Sheng, W. Zhang, J.T. Guo, and H.Q. Ye, Mater. Charact. 60, 1311 (2009).CrossRefGoogle Scholar
  20. 20.
    J.T. Guo, Y. Xie, L.Y. Sheng, L.Z. Zhou, and Y.C. Liang, Intermetallics 19, 206 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Wang, J. Shen, Z. Shang, J.F. Zhang, J.H. Chen, and H.Z. Fu, Intermetallics 44, 44 (2014).CrossRefGoogle Scholar
  22. 22.
    L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, and H.Q. Ye, J. Alloys Compd. 475, 730 (2009).CrossRefGoogle Scholar
  23. 23.
    L. Wang, J. Shen, Z. Shang, J.F. Zhang, Y.J. Du, and H.Z. Fu, JOM 65, 1419 (2013).CrossRefGoogle Scholar
  24. 24.
    L. Wang, J. Shen, Z. Shang, and H.Z. Fu, Scripta Mater. 89, 1 (2014).CrossRefGoogle Scholar
  25. 25.
    L. Wang, J. Shen, Z. Shang, J.F. Zhang, Y.J. Du, and H.Z. Fu, Mater. Sci. Eng. A 607, 113 (2014).CrossRefGoogle Scholar
  26. 26.
    J.T. Guo, K.W. Huai, Q. Gao, W.L. Ren, and G.S. Li, Intermetallics 15, 727 (2007).CrossRefGoogle Scholar
  27. 27.
    W.L. Ren, J.T. Guo, G.S. Li, and J.Y. Zhou, Mater. Lett. 57, 1374 (2003).CrossRefGoogle Scholar
  28. 28.
    H.E. Cline and J.L. Walter, Metall. Trans. 1, 2907 (1970).Google Scholar
  29. 29.
    J.D. Hunt and K.A. Jackson, Trans. Met. Soc. AIME 239, 864 (1967).Google Scholar
  30. 30.
    D.M. Stefanescu, Science and Engineering of Casting Solidification, 2nd ed. (New York: Springer, 2009).Google Scholar
  31. 31.
    J.T. Guo, L.Y. Sheng, Y.X. Tian, L.Z. Zhou, and H.Q. Ye, Mater. Lett. 62, 3910 (2008).CrossRefGoogle Scholar
  32. 32.
    Y.C. Liang, J.T. Guo, L.Y. Sheng, and L.Z. Zhou, Acta Metall. Sin. 46, 528 (2010).CrossRefGoogle Scholar
  33. 33.
    J. Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi, Metall. Mater. Trans. A 33, 3499 (2002).CrossRefGoogle Scholar
  34. 34.
    J.Q. He, Y. Wang, M.F. Yan, Y. Yang, and L. Wang, Comput. Mater. Sci. 50, 545 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Lei Wang
    • 1
  • Jun Shen
    • 2
  • Yun-Peng Zhang
    • 1
  • Lan-Lan Guo
    • 1
  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations