JOM

, Volume 68, Issue 3, pp 967–977 | Cite as

Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment

Article

Abstract

The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.

Notes

Acknowledgements

The authors would like to express their deepest gratitude to Dr. William Brindley, Dr. Sergei Burlatsky, and other associates at Pratt & Whitney and the United Technologies Research Center in East Hartford, CT for their guidance and funding in the realization of this simulation and experimental work.

References

  1. 1.
    D.L. Bourell, J.J. Beaman, M.C. Leu, and D.W. Rosen, US-TURKEY Work Rapid Technol. 24, 5 (2009).Google Scholar
  2. 2.
    J.P. Kruth, M.C. Leu, and T. Nakagawa, CIRP Ann. Manuf. Technol. 47, 525 (1998). doi: 10.1016/S0007-8506(07)63240-5.CrossRefGoogle Scholar
  3. 3.
    I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, 2nd ed. (New York, NY: Springer, 2009), p. 472.doi: 10.1520/F2792-12A.2.Google Scholar
  4. 4.
    N. Guo and M.C. Leu, Front. Mech. Eng. 8, 215 (2013). doi: 10.1007/s11465-013-0248-8.CrossRefGoogle Scholar
  5. 5.
    I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, and D.J. Mynors, Int. J. Mach. Tools Manuf. 49, 916 (2009). doi: 10.1016/j.ijmachtools.2009.07.004.CrossRefGoogle Scholar
  6. 6.
    N. Shen, and K. Chou, Proc. ASME Int. Manuf. Sci. Eng. Conf., MSEC2012, 1–9 (2012).Google Scholar
  7. 7.
    N.K. Tolochko, M.K. Arshinov, A.V. Gusarov, V.I. Titov, T. Laoui, and L. Froyen, Rapid Prototyp. J. 9, 314 (2003).CrossRefGoogle Scholar
  8. 8.
    X. Zhao, J. Chen, X. Lin, and W. Huang, Mater. Sci. Eng. A 478, 119 (2008). doi: 10.1016/j.msea.2007.05.079.CrossRefGoogle Scholar
  9. 9.
    Q. Jia and D. Gu, J. Alloys Compd. 585, 713 (2014). doi: 10.1016/j.jallcom.2013.09.171.CrossRefGoogle Scholar
  10. 10.
    B. Baufeld, J. Mater. Eng. Perform. 21, 1416 (2012). doi: 10.1007/s11665-011-0009-y.CrossRefGoogle Scholar
  11. 11.
    M.A. Anam, D. Pal, and B. Stucker, 24th Int. Solid Free Fabr. Symp.An Addit. Manuf. Conf. SFF 2013, 463. doi: 10.13140/2.1.4009.1201. (2013)
  12. 12.
    P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2015). doi: 10.1016/j.addma.2015.03.003.CrossRefGoogle Scholar
  13. 13.
    S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, Int. J. Mach. Tools Manuf. 44, 117 (2014). doi: 10.1016/j.ijmachtools.2003.10.019.CrossRefGoogle Scholar
  14. 14.
    L. Dong, A. Makradi, S. Ahzi, and Y. Remond, J. Mater. Process. Technol. 209, 700 (2009). doi: 10.1016/j.jmatprotec.2008.02.040.CrossRefGoogle Scholar
  15. 15.
    A.N. Arce, Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys (Raleigh, NC: North Carolina State University, 2009).Google Scholar
  16. 16.
    S. Rouquette, J. Guo, and P. Le Masson, Int. J. Therm. Sci. 46, 128 (2007). doi: 10.1016/j.ijthermalsci.2006.04.015.CrossRefGoogle Scholar
  17. 17.
    K. Zeng, D. Pal, and B.E. Stucker, Proc. 2012 SFF Symp., 796 (2012).Google Scholar
  18. 18.
    C. Courtney and W.M. Steen, Appl. Phys. 17, 303 (1978).CrossRefGoogle Scholar
  19. 19.
    S.S. Sih and J.W. Barlow, Sci. Technol. 22, 427 (2004). doi: 10.1080/02726350490501682.Google Scholar
  20. 20.
    C. Montgomery, J. Beuth, L. Sheridan, and N. Klingbeil, Proc. 2015 SFF Symp., 1195 (2015).Google Scholar
  21. 21.
    E. Soylemez, J. Beuth, K. Taminger, K Proc. 2010 SFF Symp., 571 (2010).Google Scholar
  22. 22.
    J. Fox, J. Beuth, Proc. 2013 SFF Symp., 675 (2013).Google Scholar
  23. 23.
    J. Beuth, J. Fox, J. Gockel, C. Montgomery, R. Yang, H. Qiao, E. Soylemez, P. Peeseewatt, A. Anvari, S. Narra, and N. Klingbeil, Proc. SFF Symp. Austin, 1, 655, (2013). doi: 10.1017/CBO9781107415324.004.
  24. 24.
    J. Romano, L.J. Ladani, J. Razmi, and M. Sadowski, Addit. Manuf. 8, 1 (2015). doi: 10.1016/j.addma.2015.07.003.CrossRefGoogle Scholar
  25. 25.
    J. Romano, L.J. Ladani, and M. Sadowski, Procedia Manuf., 238. doi: 10.1016/j.promfg.2015.09.012. (2015)
  26. 26.
    A. Faghri and Y. Zhang, Transport Phenomena in Multiphase Systems (Burlington, MA: Elsevier, 2006).Google Scholar
  27. 27.
    M. Rombouts, L. Froyen, A.V. Gusarov, E.H. Bentefour, and C. Glorieux, J. Appl. Phys. 97, 1 (2005). doi: 10.1063/1.1832740.CrossRefGoogle Scholar
  28. 28.
    Y. Li and D. Gu, Mater. Des. 63, 856 (2014). doi: 10.1016/j.matdes.2014.07.006.CrossRefGoogle Scholar
  29. 29.
    P. Fischer, N. Karapatis, V. Romano, R. Glardon, and H.P. Weber, Appl. Phys. A Mater. Sci. Process. 74, 467 (2002). doi: 10.1007/s003390101139.CrossRefGoogle Scholar
  30. 30.
    G.R. Hadley, Int. J. Heat Mass Transf. 29, 909 (1986).CrossRefGoogle Scholar
  31. 31.
    J.S. Agapiou and M.F. DeVries, J. Heat Transf. 111, 281 (1989).CrossRefGoogle Scholar
  32. 32.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge, England: Woodhead Publishing, 2002).CrossRefGoogle Scholar
  33. 33.
    Y.S. Touloukian and D.P. DeWitt, Thermophysical Properties of Matter-The TPRC Data Series. Volume 7. Thermal Radiative Properties-Metallic Elements and Alloys, Vol. 7 (New York, NY: Plenum, 1972).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations