Skip to main content
Log in

Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Precipitation hardening is an effective strengthening mechanism to achieve high strength at moderate ductility in Mg-RE alloys. However, improved mechanical properties by precipitates that strengthen the alloy can affect corrosion rates as the finely dispersed particles are often more noble than the matrix. Biodegradable implant material should show a certain corrosion rate, but should be free of pitting, because wide and deep pits are notches that can cause higher stress concentration. WE43 has generally shown an acceptable biological response. In this study, a Mg-Y-Nd-Gd-Dy (WE32) alloy in extruded, solution and precipitation heat-treated conditions has been investigated. Solution heat treatment causes grain growth and strength loss. A rather short ageing response to peak hardness was observed, where peak hardening causes hardness values to exceed that of the initial extruded condition. Grain growth during ageing is not significant. Corrosion was evaluated with potentiodynamic polarization in Ringer Acetate solution. The highest corrosion rate was observed in the T4 condition. The peak aged alloy showed the most homogenous form of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.F. Zheng, X.N. Gu, and F. Witte, Mat. Sci. Eng. R. 77, 1 (2014).

    Article  Google Scholar 

  2. Magnesium Elektron UK, data sheet 467.

  3. L. Yang, Y. Huang, Q. Peng, F. Feyerabend, K.U. Kainer, R. Willumeit, and N. Hort, Mat. Sci. Eng. B 176, 1827 (2011).

    Article  Google Scholar 

  4. L. Yang, N. Hort, D. Laipple, D. Höche, Y. Huang, K.U. Kainer, R. Willumeit, and F. Feyerabend, Acta Biomater. 9, 8475 (2013).

    Article  Google Scholar 

  5. L. Yang, Y. Huang, F. Feyerabend, R. Willumeit, C.L. Mendis, K.U. Kainer, and N. Hort, Acta Biomater. 9, 8499 (2013).

    Article  Google Scholar 

  6. L. Yang, Y. Huang, F. Feyerabend, R. Willumeit, K.U. Kainer, and N. Hort, J. Mech. Behav. Biomed. Mater. 13, 36 (2012).

    Article  Google Scholar 

  7. N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, and F. Feyerabend, Acta Biomater. 6, 1714 (2010).

    Article  Google Scholar 

  8. F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).

    Article  Google Scholar 

  9. D. Tolnai, C.L. Mendis, A. Stark, G. Szakács, B. Wiese, K.U. Kainer, and N. Hort, Mater. Lett. 102–103, 62 (2013).

    Article  Google Scholar 

  10. B. Smola, I. Stulíková, F. von Buch, and B.L. Mordike, Mater. Sci. Eng. A 324, 113 (2002).

    Article  Google Scholar 

  11. L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, and I.E. Tarytina, Met. Sci. Heat Treat. 52, 588 (2011).

    Google Scholar 

  12. Y.H. Kang, D. Wu, R.S. Chen, and E.H. Han, J. Magnes. Alloys 2, 109 (2014).

    Article  Google Scholar 

  13. ASTM Standard G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion (Washington, DC: ASTM, 1994).

    Google Scholar 

  14. N. Li, C. Guo, Y.H. Wu, Y.F. Zheng, and L.Q. Ruan, Corros. Eng. Sci. Technol. 47, 346 (2012).

    Article  Google Scholar 

  15. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  16. V. Kree, J. Bohlen, D. Letzig, and K.U. Kainer, Pract. Metallogr. 41, 233 (2004).

    Google Scholar 

  17. Y. Zheng, Magnesium Alloys as Degradable Biomaterials, vol. 345 (Boca Raton: CRC Press, 2015).

    Book  Google Scholar 

  18. S. Gorsse, C.R. Hutchinson, B. Chevalier, and J.F. Nie, J. Alloys Compd. 392, 253 (2005).

    Article  Google Scholar 

  19. E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, vol. 294 (Materials Park: ASM International, 2000).

    Google Scholar 

  20. N. Eliaz, Degradation of Implant Materials, vol. 38 (New York: Springer, 2012).

    Book  Google Scholar 

  21. G. Szakács, C.L. Mendis, B. Wiese, D. Tolnai, A. Stark, K.U. Kainer, and N. Hort, Eur. Cell. Mater. 30, 22 (2015).

    Google Scholar 

  22. P.J. Apps, H. Karimzadeh, J.F. King, and G.W. Lorimer, Scr. Mater. 48, 475 (2003).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of Felix Worschech and Hartmut Habeck from UAS Stralsund. Martin Wolff (HZG) is acknowledged for measuring the dynamic modulus of elasticity

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, P., Peters, R., Mendis, C.L. et al. Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties. JOM 68, 1183–1190 (2016). https://doi.org/10.1007/s11837-015-1762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1762-4

Keywords

Navigation