JOM

, Volume 68, Issue 2, pp 517–529 | Cite as

Microstructural Evolution of Type 304 and 316 Stainless Steels Under Neutron Irradiation at LWR Relevant Conditions

  • L. Tan
  • R. E. Stoller
  • K. G. Field
  • Y. Yang
  • H. Nam
  • D. Morgan
  • B. D. Wirth
  • M. N. Gussev
  • J. T. Busby
Article

Abstract

Life extension of light water reactors will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), leading to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher doses.

References

  1. 1.
    K. Fukuya, J. Nucl. Sci. Technol. 50, 213 (2013).CrossRefGoogle Scholar
  2. 2.
    T.R. Allen and J.T. Busby, JOM 61, 29 (2009).CrossRefGoogle Scholar
  3. 3.
    E.A. Kenik and J.T. Busby, Mater. Sci. Eng. R 73, 67 (2012).CrossRefGoogle Scholar
  4. 4.
    S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
  5. 5.
    F.A. Garner, Comprehensive Nuclear Materials, vol. 4, ed. R.J.M. Konings, T.R. Allen, R.E. Stoller, and S. Yamanaka (Amsterdam: Elsevier, 2012), p. 33.CrossRefGoogle Scholar
  6. 6.
    CIR II program: Description of the Boris 6 and 7 experiments in the BOR-60 fast breeder reactor (Palo Alto, CA: EPRI, 2005), p. 1011787.Google Scholar
  7. 7.
    R.E. Stoller, G.R. Odette, Radiation Induced Changes in Microstructure: 13th International Symposium, ASTM STP 955, ed. F.A. Garner, N.H. Packan, and A.S. Kumar (American Society for Testing and Materials, Philadelphia, 1987), pp. 371–392.Google Scholar
  8. 8.
    R.E. Stoller, A.V. Barashev, and S.I. Golubov, Cavity nucleation under irradiation conditions typical of LWR internal components, ORNL/LTR-2013/487, Oak Ridge National Laboratory, May 2013.Google Scholar
  9. 9.
    S.I. Golubov, A.M. Ovcharenko, A.V. Barashev, and B.N. Singh, Philos. Mag. A 81, 643 (2001).CrossRefGoogle Scholar
  10. 10.
    S.I. Golubov, R.E. Stoller, and S.J. Zinkle, A group method for an approximate solution of two dimensional kinetic equations describing evolution of point defect clusters, Fusion Reactor Materials, Semi-annual progress report for period ending December 31, 2002, DOE/ER-0313/33, US Department of Energy, pp. 155–180.Google Scholar
  11. 11.
    K.G. Field, Y. Yang, T.R. Allen, and J.T. Busby, Acta Mater. 89, 438 (2015).CrossRefGoogle Scholar
  12. 12.
    T.R. Allen, J.T. Busby, G.S. Was, and E.A. Kenik, J. Nucl. Mater. 255, 44 (1998).CrossRefGoogle Scholar
  13. 13.
    T.S. Duh, J.J. Kai, and F.R. Chen, J. Nucl. Mater. 283–287, 198 (2000).CrossRefGoogle Scholar
  14. 14.
    N.Q. Lam, J. Nucl. Mater. 117, 106 (1983).CrossRefGoogle Scholar
  15. 15.
    H. Wiedersich, P.R. Okamoto, and N.Q. Lam, J. Nucl. Mater. 83, 98 (1979).CrossRefGoogle Scholar
  16. 16.
    J.D. Tucker, R. Najafabadi, T.R. Allen, and D. Morgan, J. Nucl. Mater. 405, 216 (2010).CrossRefGoogle Scholar
  17. 17.
    E. Kozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer, Mater. Sci. Eng. A 385, 157 (2004).Google Scholar
  18. 18.
    E. Kozeschnik, J. Svoboda, and F.D. Fischer, CALPHAD 28, 379 (2004).CrossRefGoogle Scholar
  19. 19.
    J.S. Shim, E. Povoden-Karadeniz, E. Kozeshnik, and B.D. Wirth, J. Nucl. Mater. 462, 250 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik, Mater. Sci. Eng. A 385, 166 (2004).Google Scholar
  21. 21.
    http://www.matcalc.com. Accessed 10 March 2015.
  22. 22.
    T. Tokunaga, K. Hashima, H. Ohtani, and M. Hasebe, Mater. Trans. 45, 1507 (2004).CrossRefGoogle Scholar
  23. 23.
    B. Hu, H. Xu, S. Liu, Y. Du, C. He, C. Sha, D. Zhao, and Y. Peng, CALPHAD 35, 346 (2011).CrossRefGoogle Scholar
  24. 24.
    R.L. Simons and L.A. Hulbert, Effects of Radiation on Materials: 12th Int. Symp., ed. F.A. Garner, J.S. Perrin (ASTM STP 870, 1985), pp. 820–839.Google Scholar
  25. 25.
    L. Tan, J.T. Busby, H.J.M. Chichester, K. Sridharan, and T.R. Allen, J. Nucl. Mater. 437, 70 (2013).CrossRefGoogle Scholar
  26. 26.
    D.J. Edwards, E.P. Simonen, and S.M. Bruemmer, J. Nucl. Mater. 317, 13 (2003).CrossRefGoogle Scholar
  27. 27.
    D.J. Edwards, E.P. Simonen, F.A. Garner, L.R. Greenwood, B.M. Oliver, and S.M. Bruemmer, J. Nucl. Mater. 317, 32 (2003).CrossRefGoogle Scholar
  28. 28.
    D.J. Edwards, F.A. Garner, S.M. Bruemmer, and P. Efsing, J. Nucl. Mater. 384, 249 (2009).CrossRefGoogle Scholar
  29. 29.
    D.J. Edwards, A. Schemer-Kohrn, and S. Bruemmer, Characterization of Neutron-Irradiated 300-Series Stainless Steels (Palo Alto, CA: EPRI, 2006), p. 1009896.Google Scholar
  30. 30.
    D.J. Edwards and S.M. Bruemmer, Characterization of CIR II Irradiated Stainless Steels (Palo Alto, CA: EPRI, 2008). EP-P19021/C9406.Google Scholar
  31. 31.
    Y. Yang, Y. Chen, Y. Huang, T. Allen, and A. Rao, in: J.T. Busby, G. Ilevbare, P.L. Andresen (Eds.), 15th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Wiley, Hoboken 2012, pp. 2137–2148.Google Scholar
  32. 32.
    Y. Yang, T.R. Allen, Y. Chen, and O.K. Chopra, 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Virginia Beach, VA, August 23–27, 2009, pp. 1335–1340.Google Scholar
  33. 33.
    A.-É. Renault, C. Pokor, J. Garnier, and J. Malaplate, Microstructure and grain boundary chemistry evolution in austenitic stainless steels irradiated in the BOR-60 reactor up to 120 dpa, ibid., pp. 1324–1334.Google Scholar
  34. 34.
    Y. Chen, O.K. Chopra, W.K. Soppet, W.J. Shack, Y. Yang, T. Allen, and A.S. Rao, Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I, Argonne National Laboratory, ANL/09-32.Google Scholar
  35. 35.
    C. Pokor, Y. Brechet, P. Dubuisson, J.-P. Massoud, and A. Barbu, J. Nucl. Mater. 326, 19 (2004).CrossRefGoogle Scholar
  36. 36.
    K. Fukuya, K. Fuji, H. Nishioka, and Y. Kitsunai, J. Nucl. Sci. Technol. 43, 159 (2006).CrossRefGoogle Scholar
  37. 37.
    T. Yonezawa, K. Suzuki, S. Ooki, and A. Hashimoto, Metall. Mater. Trans. A 44, 5884 (2013).CrossRefGoogle Scholar
  38. 38.
    Materials reliability program characterization of type 316 cold-worked stainless steel highly irradiated under PWR operating conditions (MRP-73), EPRI-1003525, August, 2002.Google Scholar
  39. 39.
    P. Doig, D. Lonsdale, and P.E.J. Flewitt, Philos. Mag. A 41, 761 (1980).CrossRefGoogle Scholar
  40. 40.
    P. Doig, D. Lonsdale, and P.E.J. Flewitt, Quantitative Microanalysis with High Spatial Resolution (London: The Metals Society, 1981).Google Scholar
  41. 41.
    T.S. Duh, J.J. Kai, F.R. Chen, and L.H. Wang, J. Nucl. Mater. 294, 267 (2001).CrossRefGoogle Scholar
  42. 42.
    R. Hu, G.D.W. Smith, and E.A. Marquis, Acta Mater. 61, 3490 (2013).CrossRefGoogle Scholar
  43. 43.
    C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.-M. Bai, and M.L. Taheri, Acta Mater. 67, 145 (2014).CrossRefGoogle Scholar
  44. 44.
    G.-G. Lee, H.-H. Jin, Y.-B. Lee, and J. Kwon, J. Nucl. Mater. 449, 234 (2014).CrossRefGoogle Scholar
  45. 45.
    M. Tomozawa, Y. Miyahara, and K. Kako, Mater. Sci. Eng. A 578, 167 (2013).CrossRefGoogle Scholar
  46. 46.
    K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, and T.R. Allen, J. Nucl. Mater. 435, 172 (2013).CrossRefGoogle Scholar
  47. 47.
    K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, and T.R. Allen, J. Nucl. Mater. 445, 143 (2014).CrossRefGoogle Scholar
  48. 48.
    L. Tan and J.T. Busby, J. Nucl. Mater. 443, 351 (2013).CrossRefGoogle Scholar
  49. 49.
    M.N. Gussev, J.T. Busby, L. Tan, and F.A. Garner, J. Nucl. Mater. 448, 294 (2014).CrossRefGoogle Scholar
  50. 50.
    S. Takaya, Y. Nagae, T. Yoshitake, Y. Nemoto, J. Nakano, F. Yeno, K. Aoto, T. Tsukada, and E.-J. Adv, Maintenance 1, 44 (2009).Google Scholar
  51. 51.
    M.N. Gussev, K.G. Field, and J.T. Busby, J. Nucl. Mater. 446, 187 (2014).CrossRefGoogle Scholar
  52. 52.
    R.E. Stoller and S.J. Zinkle, J. Nucl. Mater. 283–287, 349 (2000).CrossRefGoogle Scholar
  53. 53.
    L. Tan and J.T. Busby, J. Nucl. Mater. 465, 724 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • L. Tan
    • 1
  • R. E. Stoller
    • 1
  • K. G. Field
    • 1
  • Y. Yang
    • 1
  • H. Nam
    • 2
  • D. Morgan
    • 2
  • B. D. Wirth
    • 3
  • M. N. Gussev
    • 1
  • J. T. Busby
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.University of WisconsinMadisonUSA
  3. 3.University of TennesseeKnoxvilleUSA

Personalised recommendations