Skip to main content

Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR


The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. T.R. Allen, Y. Chen, X. Ren, K. Sridharan, L. Tan, G.S. Was, E. West, and D. Guzonas, Compr. Nucl. Mater. 5, 279 (2012).

    Article  Google Scholar 

  2. M. Yetisir, M. Gaudet, and D. Rhodes, in 6th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6), 3–7 March 2013, China, Paper No: ISSCWR6-13059.

  3. N.A. Dollezhal, in Proceeding 2nd International conference on the Peaceful Uses of Atomic Energy, 8, 398, UN, Geneva.

  4. J.H. Wright and J.F. Paterson, Proceeding of American Power Conference, XXVIII, 1966, p. 1391.

  5. R.V. Moore, United Kingdom Atomic Energy Authority, Report No: 776 (1964).

  6. C.K. Chow and H.F. Khartabil, Nucl. Eng. Technol. 40, 139 (2007).

    Article  Google Scholar 

  7. D. Guzonas and R. Novotny, Prog. Nucl. Energy 77, 361 (2014).

    Article  Google Scholar 

  8. T. Schulenberg, IAEA Technical Meeting on Materials and Chemistry for Supercritical Water Cooled Reactors, Report No: 41430 (2011).

  9. W. Zheng, D. Guzonas, and J. Li, in 16th Pacific Basin Nuclear Conference, Paper No: P16P1413 (2008).

  10. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, J. Nucl. Mater. 371, 176 (2007).

    Article  Google Scholar 

  11. C. Sun, R. Hui, W. Qu, and S. Yick, Corros. Sci. 51, 2508 (2009).

    Article  Google Scholar 

  12. D. Guzonas and W.G. Cook, Corros. Sci. 65, 48 (2012).

    Article  Google Scholar 

  13. X. Ru and R.W. Staehle, Corrosion 69, 211 (2013).

    Article  Google Scholar 

  14. H. Weingärtner and E.U. Franck, Angew. Chem. J. 44, 2672 (2005).

    Article  Google Scholar 

  15. A. Loppinet-Serani, J. Chem. Technol. Biotechnol. 85, 583 (2010).

    Article  Google Scholar 

  16. M. Nakahara, N. Matubayasi, C. Wakai, and Y. Tsujino, J. Mol. Liq. 90, 75 (2001).

    Article  Google Scholar 

  17. X. Guan and D.D. Macdonald, Corrosion 65, 376 (2009).

    Article  Google Scholar 

  18. L.B. Kriksunov and D.D. Macdonald, J. Electrochem. Soc. 142, 4069 (1995).

    Article  Google Scholar 

  19. Y. Yi, Y. Watanabe, T. Kondo, H. Kimura, and M. Sato, J. Press. Vessel Technol. 123, 391 (2001).

    Article  Google Scholar 

  20. I. Betova, M. Bojinov, P. Kinnunen, S. Penttilä, and T. Saario, J. Supercrit. Fluids 43, 333 (2007).

    Article  Google Scholar 

  21. A.T. Motta, A. Yilmazbayhan, M.J.G. da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park, J. Nucl. Mater. 371, 61 (2007).

    Article  Google Scholar 

  22. D. Khatamian, J. Supercrit. Fluids 78, 132 (2013).

    Article  Google Scholar 

  23. J. Kaneda, in 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, 15–18 August, 2005.

  24. J. Bichoff (Ph.D. Dissertation, Pennsylvania State University, 2011).

  25. W. Li, O.T. Woo, D. Guzonas, J. Li, X. Huang, R. Sanchez, and C.D. Bibby, Characterization of Minerals, Metals, and Materials, ed. N.J Hoboken (New York: Wiley, 2015), p. 234.

  26. I.G. Wright and R.B. Dooley, Int. Mater. Rev. 55, 129 (2010).

    Article  Google Scholar 

  27. Y. Maruno, J. Kaneda, S. Kasahara, N. Saito, T. Shikama, and H. Matsui, International Congress on Advances in Nuclear Power Plants, Paper No: 9289 (2009).

  28. Y. Zeng, J. Li and W. Zheng, NACE Corrosion. Paper No: 5469 (2015).

  29. S. Higuchi, S. Sakurai, K. Yamada, and Y. Ishiwatari, in Proceedings of the 5th International Symposium SCWR, Paper No: 025 (2011).

  30. R.M. Boothby, Compr Nucl. Mater. 4, 123 (2012).

    MathSciNet  Article  Google Scholar 

  31. T.T. Claudson and H.J. Pessl, Pacific Northwest Laboratory, Report No: BNWL-154 (1965).

  32. H.C. Cowen, P.B. Longton, UK Atomic Energy Authority, Report No: 399 (1966).

  33. X. Ren, K. Sridharan, and T.R. Allen, Corrosion 63, 603 (2007).

    Article  Google Scholar 

  34. R. Fujisawa, K. Nishimura, T. Nishida, M. Sakaihara, Y. Kurata, and Y. Watanabe, Corrosion 62, 270 (2006).

    Article  Google Scholar 

  35. D. Guzonas, J. Wills, T. Do, and J. Michel, in 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, 2007, p. 1250.

  36. M. Edwards, S. Rousseau, and D. Guzonas, in 2014 Canada-China Conference on Advanced Reactor Development (Canada, 2014).

  37. D.A. Guzonas, M.K. Edwards, and W. Zheng, in 7th International Symposium on Supercritical Water-Cooled Reactors, paper No: ISSCWR7-2090 (2015).

  38. Y. Nakahara, M. Yamamoto, K. Kiuchi, H. Karasawa, and Y. Katsumura, in Proceedings of JSCE materials and environments, p. 193 (2007).

  39. Y. Nakahara, M. Yamamoto, K. Kiuchi, H. Karasawa, and Y. Katsumura, in 16th Pacific Basin Nuclear Conference, Paper No#: P16P1288 (2008).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yimin Zeng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Guzonas, D. Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR. JOM 68, 475–479 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Austenitic Stainless Steel
  • Supercritical Water
  • Superheated Steam
  • Fuel Cladding
  • Corrosion Assessment