, Volume 68, Issue 2, pp 475–479 | Cite as

Corrosion Assessment of Candidate Materials for Fuel Cladding in Canadian SCWR

  • Yimin ZengEmail author
  • David Guzonas


The supercritical water-cooled reactor (SCWR) is an innovative next generation reactor that offers many promising features, but the high-temperature high-pressure coolant introduces unique challenges to the long-term safe and reliable operation of in-core components, in particular the fuel cladding. To achieve high thermal efficiency, the Canadian SCWR concept has a coolant core outlet temperature of 625°C at 25 MPa with a peak cladding temperature as high as 800°C. International and Canadian research programs on corrosion issues in supercritical water have been conducted to support the SCWR concept. This paper provides a brief review of corrosion in supercritical water and summarizes the Canadian corrosion assessment work on potential fuel cladding materials. Five alloys, SS 347H, SS310S, Alloy 800H, Alloy 625 and Alloy 214, have been shown to have sufficient corrosion resistance to be used as the fuel cladding. Additional work, including tests in an in-reactor loop, is needed to confirm that these alloys would work as the fuel cladding in the Canadian SCWR.


Austenitic Stainless Steel Supercritical Water Superheated Steam Fuel Cladding Corrosion Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.R. Allen, Y. Chen, X. Ren, K. Sridharan, L. Tan, G.S. Was, E. West, and D. Guzonas, Compr. Nucl. Mater. 5, 279 (2012).CrossRefGoogle Scholar
  2. 2.
    M. Yetisir, M. Gaudet, and D. Rhodes, in 6th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6), 3–7 March 2013, China, Paper No: ISSCWR6-13059.Google Scholar
  3. 3.
    N.A. Dollezhal, in Proceeding 2nd International conference on the Peaceful Uses of Atomic Energy, 8, 398, UN, Geneva.Google Scholar
  4. 4.
    J.H. Wright and J.F. Paterson, Proceeding of American Power Conference, XXVIII, 1966, p. 1391.Google Scholar
  5. 5.
    R.V. Moore, United Kingdom Atomic Energy Authority, Report No: 776 (1964).Google Scholar
  6. 6.
    C.K. Chow and H.F. Khartabil, Nucl. Eng. Technol. 40, 139 (2007).CrossRefGoogle Scholar
  7. 7.
    D. Guzonas and R. Novotny, Prog. Nucl. Energy 77, 361 (2014).CrossRefGoogle Scholar
  8. 8.
    T. Schulenberg, IAEA Technical Meeting on Materials and Chemistry for Supercritical Water Cooled Reactors, Report No: 41430 (2011).Google Scholar
  9. 9.
    W. Zheng, D. Guzonas, and J. Li, in 16th Pacific Basin Nuclear Conference, Paper No: P16P1413 (2008).Google Scholar
  10. 10.
    G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, J. Nucl. Mater. 371, 176 (2007).CrossRefGoogle Scholar
  11. 11.
    C. Sun, R. Hui, W. Qu, and S. Yick, Corros. Sci. 51, 2508 (2009).CrossRefGoogle Scholar
  12. 12.
    D. Guzonas and W.G. Cook, Corros. Sci. 65, 48 (2012).CrossRefGoogle Scholar
  13. 13.
    X. Ru and R.W. Staehle, Corrosion 69, 211 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Weingärtner and E.U. Franck, Angew. Chem. J. 44, 2672 (2005).CrossRefGoogle Scholar
  15. 15.
    A. Loppinet-Serani, J. Chem. Technol. Biotechnol. 85, 583 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Nakahara, N. Matubayasi, C. Wakai, and Y. Tsujino, J. Mol. Liq. 90, 75 (2001).CrossRefGoogle Scholar
  17. 17.
    X. Guan and D.D. Macdonald, Corrosion 65, 376 (2009).CrossRefGoogle Scholar
  18. 18.
    L.B. Kriksunov and D.D. Macdonald, J. Electrochem. Soc. 142, 4069 (1995).CrossRefGoogle Scholar
  19. 19.
    Y. Yi, Y. Watanabe, T. Kondo, H. Kimura, and M. Sato, J. Press. Vessel Technol. 123, 391 (2001).CrossRefGoogle Scholar
  20. 20.
    I. Betova, M. Bojinov, P. Kinnunen, S. Penttilä, and T. Saario, J. Supercrit. Fluids 43, 333 (2007).CrossRefGoogle Scholar
  21. 21.
    A.T. Motta, A. Yilmazbayhan, M.J.G. da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park, J. Nucl. Mater. 371, 61 (2007).CrossRefGoogle Scholar
  22. 22.
    D. Khatamian, J. Supercrit. Fluids 78, 132 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Kaneda, in 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, 15–18 August, 2005.Google Scholar
  24. 24.
    J. Bichoff (Ph.D. Dissertation, Pennsylvania State University, 2011).Google Scholar
  25. 25.
    W. Li, O.T. Woo, D. Guzonas, J. Li, X. Huang, R. Sanchez, and C.D. Bibby, Characterization of Minerals, Metals, and Materials, ed. N.J Hoboken (New York: Wiley, 2015), p. 234.Google Scholar
  26. 26.
    I.G. Wright and R.B. Dooley, Int. Mater. Rev. 55, 129 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Maruno, J. Kaneda, S. Kasahara, N. Saito, T. Shikama, and H. Matsui, International Congress on Advances in Nuclear Power Plants, Paper No: 9289 (2009).Google Scholar
  28. 28.
    Y. Zeng, J. Li and W. Zheng, NACE Corrosion. Paper No: 5469 (2015).Google Scholar
  29. 29.
    S. Higuchi, S. Sakurai, K. Yamada, and Y. Ishiwatari, in Proceedings of the 5th International Symposium SCWR, Paper No: 025 (2011).Google Scholar
  30. 30.
    R.M. Boothby, Compr Nucl. Mater. 4, 123 (2012).MathSciNetCrossRefGoogle Scholar
  31. 31.
    T.T. Claudson and H.J. Pessl, Pacific Northwest Laboratory, Report No: BNWL-154 (1965).Google Scholar
  32. 32.
    H.C. Cowen, P.B. Longton, UK Atomic Energy Authority, Report No: 399 (1966).Google Scholar
  33. 33.
    X. Ren, K. Sridharan, and T.R. Allen, Corrosion 63, 603 (2007).CrossRefGoogle Scholar
  34. 34.
    R. Fujisawa, K. Nishimura, T. Nishida, M. Sakaihara, Y. Kurata, and Y. Watanabe, Corrosion 62, 270 (2006).CrossRefGoogle Scholar
  35. 35.
    D. Guzonas, J. Wills, T. Do, and J. Michel, in 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, 2007, p. 1250.Google Scholar
  36. 36.
    M. Edwards, S. Rousseau, and D. Guzonas, in 2014 Canada-China Conference on Advanced Reactor Development (Canada, 2014).Google Scholar
  37. 37.
    D.A. Guzonas, M.K. Edwards, and W. Zheng, in 7th International Symposium on Supercritical Water-Cooled Reactors, paper No: ISSCWR7-2090 (2015).Google Scholar
  38. 38.
    Y. Nakahara, M. Yamamoto, K. Kiuchi, H. Karasawa, and Y. Katsumura, in Proceedings of JSCE materials and environments, p. 193 (2007).Google Scholar
  39. 39.
    Y. Nakahara, M. Yamamoto, K. Kiuchi, H. Karasawa, and Y. Katsumura, in 16th Pacific Basin Nuclear Conference, Paper No#: P16P1288 (2008).Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2015

Authors and Affiliations

  1. 1.CanmetMATERIALSHamiltonCanada
  2. 2.Canadian Nuclear LaboratoriesChalk River LaboratoriesChalk RiverCanada

Personalised recommendations