Skip to main content
Log in

Recovery of Copper from Cyanidation Tailing by Flotation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10−3 mol/L and copper sulfate 1.67 × 10−4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.C. Lv, J. Ding, P. Qian, Q.C. Li, S.F. Ye, and Y.F. Chen, Miner. Eng. 70, 141 (2015).

    Article  Google Scholar 

  2. Y.L. Zhang, H.M. Li, and X.J. Yu, Trans. Nonferrous Met. Soc. China 23, 1165 (2013).

    Article  Google Scholar 

  3. Y.L. Zhang, H.M. Li, and X.J. Yu, J. Hazard. Mater. 213–214, 167 (2012).

    Article  Google Scholar 

  4. W.D. Wang, Y.L. Feng, H.R. Li, Z.C. Yang, X. Zhang, and A.F. Yi, Chin. J. Nonferrous Met. 25, 233 (2015).

    Google Scholar 

  5. C. Li, H.H. Sun, J. Bai, and L.T. Li, J. Hazard. Mater. 174, 71 (2010).

    Article  Google Scholar 

  6. D.B. Donato, O. Nichols, H. Possingham, M. Moore, P.F. Ricci, and B.N. Noller, Environ. Int. 33, 974 (2007).

    Article  Google Scholar 

  7. D. Hewitt, P. Breuer, and C. Jeffery, Miner. Process. Extr. Metall. Rev. 121, 228 (2012).

    Article  Google Scholar 

  8. C.V. Patricio, M.M. Veiga, K. Bern, J.A. Shandro, and H. Ken, J. Cleaner Prod. 19, 1125 (2011).

    Article  Google Scholar 

  9. M. Adams and V. Lloyd, Miner. Eng. 21, 501 (2008).

    Article  Google Scholar 

  10. R.G. Stephen, B.S. Gregory, B.D. David, and G.G. Craig, Ecotoxicol. Environ. Saf. 72, 1579 (2009).

    Article  Google Scholar 

  11. G.J. Zagury, K. Oudjehani, and L. Deschenes, Sci. Total Environ. 320, 211 (2004).

    Article  Google Scholar 

  12. T.G. Shi, China Mine Eng. 37, 25 (2008).

    Google Scholar 

  13. H.F. Yang, L.L. Jing, and B.G. Zhang, J. Hazard. Mater. 185, 1405 (2011).

    Article  Google Scholar 

  14. W.C. Liu, J.K. Yang, and B. Xiao, J. Hazard. Mater. 161, 474 (2009).

    Article  Google Scholar 

  15. K. Maweja, T. Mukongo, and I. Mutombo, J. Hazard. Mater. 164, 856 (2009).

    Article  Google Scholar 

  16. S. Grano, J. Ralston, and R.S.C. Smart, Int. J. Miner. Process. 30, 69 (1990).

    Article  Google Scholar 

  17. B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Miner. Eng. 66–68, 25 (2014).

    Article  Google Scholar 

  18. Y.S. Zhu and J.G. Zhu, Chemical Principle of Flotation Reagents (Changsha: Central South University of Technology Press, 1996).

    Google Scholar 

  19. J.S. Deng, S.M. Wen, J. Liu, D.D. Wu, and Q.C. Feng, Trans. Nonferrous Met. Soc. China 24, 3955 (2014).

    Article  Google Scholar 

  20. J.S. Deng, S.M. Wen, Y.J. Xian, J. Liu, and S.J. Bai, Miner. Eng. 42, 22 (2012).

    Article  Google Scholar 

  21. A. Valenzuela, J.L. Valenzuela, and J.R. Parga, Adv. Chem. Eng. Sci. 3, 171 (2013).

    Article  Google Scholar 

  22. G. Bulut and S. Atak, Miner. Metall. Process. 19, 81 (2002).

    Google Scholar 

  23. M.C. Fuerstenau, M.C. Kuhn, and D.A. Elgillani, AIME Trans. 241, 148 (1968).

    Google Scholar 

  24. G. Milazzo and S. Caroli, Tables of Standard Electrode Potentials (New York: Wiley, 1978), p. 49.

    Google Scholar 

  25. A.P. Chandra, L. Puskar, D.J. Simpson, and A.R. Gerson, Int. J. Miner. Process. 114–117, 16 (2012).

    Article  Google Scholar 

  26. E.T. Pecina, A. Uribe, F. Nava, and J.A. Finch, Miner. Eng. 19, 172 (2006).

    Article  Google Scholar 

  27. R.A.D. Pattrick, K.E.R. England, J.M. Charnock, and J.F.W. Mosselmans, Int. J. Miner. Process. 55, 247 (1999).

    Article  Google Scholar 

  28. J.G. Wu, Modern Infrared Spectroscopic Technology and Application, Vol. 2 (Beijing: Science and Technology Literature Press, 1994), p. 265.

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51474114) and the Natural Science Foundation of Jiangxi Province (No. 20142BAB206017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Huang, X. & Yang, X. Recovery of Copper from Cyanidation Tailing by Flotation. JOM 68, 548–555 (2016). https://doi.org/10.1007/s11837-015-1726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1726-8

Keywords

Navigation