Skip to main content
Log in

Modeling and Simulation of Petroleum Coke Calcination in Pot Calciner Using Two-Fluid Model

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The aim of this work was to establish a mathematical model for the analysis of calcining process of petroleum coke in a 24-pot calciner via computational fluid dynamics (CFD) numerical simulation method. The model can be divided into two main parts (1) heterogeneous reacting flow of petroleum coke calcination in the pot was simulated using a two-fluid model approach where the gas and solid phase are treated as a continuous phases; and (2) the standard turbulence equations combined with the finite rate/eddy-dissipation combustion model and discrete ordinates model were solved for the turbulent gas reacting flow in the flue. The model of the calcining process was implemented in ANSYS Fluent 15.0 (commercial CFD software) and validated by industrial production data. After the validation research, the model has been applied to inspect the distribution features of the temperature field in the furnace, the concentration field of residual moisture and volatiles in the petroleum coke, and the vector velocity field of gas and solid phases. This research can provide a theoretical basis for optimizing the structure and improving the automatic control level of a pot calciner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A i :

Pre-exponential factor (1/s)

A ij :

Mass fraction of species i in element j

B j :

Mass of element j (kg)

C 1, C 2, C µ :

Turbulence model constants

C p :

Specific heat (J/(kg K))

D :

Diffusion coefficient (m2/s)

d p :

Particle diameter (m)

E i :

Activation energy (J/mol)

F d :

Momentum source term (N/m3)

f w :

Friction at wall (N/m3)

g :

Gravitational acceleration (m/s2)

G k :

Production of turbulence kinetic energy (kg/(m s3))

H :

Mean enthalpy (W/m3)

h:

Heat transfer coefficient (W/(m2 K))

\(h_{j}^{0}\) :

Standard-state enthalpy (J/mol)

k :

Turbulent kinetic energy (m2/s2)

k i :

Reaction rate constant (1/s)

M w,i :

Molecular weight of species i (kg/mol)

M :

Volatiles to gas source term (kg/(m3 s))

m i :

Mass of species i (kg)

p :

Pressure (Pa)

Q c :

Convective heat transfer term (W)

Q g :

Heat of chemical reaction term (W)

Q r :

Heat transfer term associated with radiative heat transfer (W)

R :

Gas constant (J/mol K)

r i,r :

Arrhenius molar rate of creation/destruction of species i in reaction r (mol/(ms))

R i :

Chemical reaction of species i mass term (kg/(m3 s))

S h :

Heat term from volatiles (W/m3)

S :

Mass source term (kg/(m3 s))

S s :

Specific surface area (m2/m3)

T :

Temperature (K)

U :

Velocity vector (m/s)

u,v,w :

Velocity magnitude (m/s)

V Loss :

Mass loss fraction of pyrolysis and burning

W in :

Mass of dried petroleum coke (kg)

Y :

Mass fraction of species

α :

Volume fraction

ε :

Turbulent dissipation rate (m2/s3)

ε s :

Bed porosity

σ k , σ ε :

Turbulence model constant

λ :

Thermal conductivity (W/(m K))

ρ :

Density (kg/m3)

µ :

Dynamic viscosity (Pa s)

µ t :

Turbulent viscosity (Pa s)

µ eff :

Effective viscosity (Pa s)

\(\varGamma_{{i,{\text{eff}}}}\) :

Effective diffusion coefficient (m2/s)

\(\varGamma_{i}\) :

Molecular diffusivity of species i (m2/s)

\(\varGamma_{\text{t}}\) :

Turbulent diffusivity of species i (m2/s)

\(\varepsilon_{{\text{ext}}}\) :

Emissivity of the external wall surface (1/m)

eff:

Effective

e:

Element count

g:

Gas phase

w:

Wall

s:

Solid phase

i :

Gas component

j :

Solid component

n, m :

Gas/solid species count

FC:

Fixed carbon and ash

References

  1. S. Zhou, Y. Sun, and C. Liu, Light Met 12, 33 (2013)

    Google Scholar 

  2. P. Wang, Production and Application of Aluminum Electrolytic Carbon Anode (Metallurgical Industry Press, Beijing, 2005), pp. 61–73

    Google Scholar 

  3. M.A. Martins, L.S. Oliveira, and A.S. Franca, Fuel 80, 1611 (2001)

    Article  Google Scholar 

  4. C. Zhang, Light Met. 08, 38 (2008)

    Google Scholar 

  5. H. Li, X. Wang, and K. Yang, Light Met. 03, 43 (2011)

    Google Scholar 

  6. F. Patisson, E. Lebas, F.O. Hanrot, D. Ablitzer, and J. Houzelot, Metall. Mater. Trans. B 31, 381 (2000)

    Article  Google Scholar 

  7. M.S. Manju and S. Savithri, Fuel 102, 54 (2012)

    Article  Google Scholar 

  8. Q. Zheng and H. Wei, Energy Fuels 27, 3570 (2013)

    Article  Google Scholar 

  9. Y. Feng, X. Zhang, Q. Yu, Z. Shi, Z. Liu, H. Zhang, and H. Liu, Appl. Therm. Eng. 28, 1485 (2008)

    Article  Google Scholar 

  10. J. Chen, T. Akiyama, H. Nogami, J. Yagi, and H. Takahashi, ISIJ Int. 33, 664 (1993)

    Article  Google Scholar 

  11. R.T. Bui, G. Simard, and A. Charette, Can. J. Chem. Eng. 73, 534 (1995)

    Article  Google Scholar 

  12. Ł. Słupik, A. Fic, Z. Buliński, A.J. Nowak, L. Kosyrczyk, and G. Łabojko, Fuel 150, 415 (2015)

    Article  Google Scholar 

  13. M.A. Gómez, J. Porteiro, D. Patiño, and J.L. Míguez, Fuel 117, 716 (2014)

    Article  Google Scholar 

  14. Z. Guo and H. Tang, China Part. 3, 373 (2005)

    Article  Google Scholar 

  15. P. Lin, J. Ji, Y. Luo, and Y. Wang, Appl. Therm. Eng. 29, 3224 (2009)

    Article  Google Scholar 

  16. Y. Zhao, B. Lu, and Y. Zhong, Int. J. Multiph. Flow 71, 1 (2015)

    Article  MathSciNet  Google Scholar 

  17. M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, vol. 2 (Springer, New York, 2010), pp. 156–177

    Google Scholar 

  18. S.R. Mathur, and J.Y. Murthy, J. Thermophys. Heat Transf. 13, 467 (1999)

    Article  Google Scholar 

  19. R.K. Niven, Chem. Eng. Sci. 57, 527 (2002)

    Article  Google Scholar 

  20. M.F. Modest, Radiative Heat Transfer, vol. 2 (Academic press, San Diego, 2013), pp. 498–536

    Google Scholar 

  21. A. Klimanek, W. Adamczyk, A. Katelbach-Woźniak, G. Węcel, and A. Szlęk, Fuel 152, 131 (2015)

    Article  Google Scholar 

  22. S. Murgia, M. Vascellari, and G. Cau, Fuel 101, 129 (2012)

    Article  Google Scholar 

  23. D.A. Kontogeorgos, E.P. Keramida, and M.A. Founti, Int. J. Heat Mass Transfer 50, 5260 (2007)

    Article  MATH  Google Scholar 

  24. H. Zhou, A. Jensen, P. Glarborg, P. Jensen, and A. Kavaliauskas, Fuel 84, 389 (2005)

    Article  Google Scholar 

  25. W. Song and T. Wang, J. Eng. Des. 06, 428 (2011)

    Google Scholar 

  26. C. Schönenbeck, R. Gadiou, and D. Schwartz, Fuel 83, 443 (2004)

    Article  Google Scholar 

  27. W. Zhou, C.S. Zhao, L.B. Duan, C.R. Qu, and X.P. Chen, Chem. Eng. J. 166, 306 (2011)

    Article  Google Scholar 

  28. A.R. Miroliaei, F. Shahraki, H. Atashi, and R. Karimzadeh, J. Ind. Eng. Chem. 18, 1912 (2012)

    Article  Google Scholar 

  29. D. Merrick, Fuel 62, 540 (1983)

    Article  Google Scholar 

  30. T.F. Smith, Z.F. Shen, and J.N. Friedman, J. Heat Transfer 104, 602 (1982)

    Article  Google Scholar 

  31. C. Wang and L. Chen, J. Chongqing Univ. 34, 73 (2011)

    Google Scholar 

  32. P.R. Austin, H. Nogami, and J. Yagi, ISIJ Int. 37, 458 (1997)

    Article  Google Scholar 

  33. B. Mao, J. Xu, and C. Wang, Gansu Metall. 30, 37 (2008)

    Google Scholar 

  34. P. Wang, Y. Luo, Z. Gong, Q. Li, Z. Tan, L. Jia, and Y. Yu, Carbon Tech. 28, 41 (2009)

    Google Scholar 

  35. D. Kocaefe, A. Charette, and L. Castonguay, Fuel 74, 791 (1995)

    Article  Google Scholar 

  36. S.Z. Yong and A. Ghoniem, Fuel 97, 457 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (51374253). The author is also grateful to Miss Li for the advice on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Huang, J., Zhong, Q. et al. Modeling and Simulation of Petroleum Coke Calcination in Pot Calciner Using Two-Fluid Model. JOM 68, 643–655 (2016). https://doi.org/10.1007/s11837-015-1667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1667-2

Keywords

Navigation