Skip to main content
Log in

Modeling the Electrical Contact Resistance at Steel–Carbon Interfaces

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the aluminum smelting industry, electrical contact resistance at the stub–carbon (steel–carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel–carbon laboratory setup. By comparing the models’ estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel–carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Wilkening and J. Cote, Light Met. 4, 534 (2007).

    Google Scholar 

  2. D.G. Brooks and V.L. Bullough, Light Met. 4, 516 (1984).

    Google Scholar 

  3. D. Molenaar and B.A. Sadler, Light Met. 2, 1263 (2014).

    Google Scholar 

  4. P.J. Rhedey and L. Castonguay, Light Met. 4, 1089 (1985).

    Google Scholar 

  5. M. Dupuis, Light Met. 2010 (2010).

  6. DOE, “Electric Monthly Power-US Department of Energy,” 25 August 2014, http://www.eia.gov/.

  7. M. Braunovic, in Electrical Contacts, edited by P. Slade and M. Dekker (IIT, Boston, 1999), p. 155.

  8. R. Holm, Electric Contacts; Theory and Applications (New York: Springer, 1967), p. 7.

    Book  Google Scholar 

  9. D. Richard, M. Fafard, R. Lacroix, P. CleHry, and Y. Maltais, Finite Elem. Anal. Des. 37, 287 (2001).

    Article  MATH  Google Scholar 

  10. D. Molenaar, T. Kilpatrick, and A. Montalto, Light Met. 2013, 1359 (2013).

    Google Scholar 

  11. H. Fortin, N. Kandev, and M. Fafard, Finite Elem. Anal. Des. 52, 71 (2012).

    Article  Google Scholar 

  12. M. Bastaki, A. Zarouni, B. Jonqua, N. Ahli, L. Mishra, A.A. Jasmi, A.A. Zarouni, M. Reverdy, and V. Potocnik, Light Met. 143, 451 (2014).

    Google Scholar 

  13. D. Richard, P. Goulet, O. Trempe, M. Dupuis, and M. Fafard, Proceedings of the TMS Light Metals, p. 1067 (2009).

  14. T.X. Hou, Q. Jiao, E. Chin, W. Crowell, and C. Celik, Light Met. 1995, 755 (1995).

    Google Scholar 

  15. M. Dupuis, Light Met. (Warrendale: TMS, 1998), p. 409.

    Google Scholar 

  16. R. Peterson, Light Met. 4, 510 (1978).

    Google Scholar 

  17. W. Peterson, Light Met. 4, 500 (1976).

    Google Scholar 

  18. H. Fortin, M. Fafard, N. Kandev, and P. Goulet, Light Met. 1, 1055 (2009).

    Google Scholar 

  19. D. Molenaar, K. Ding, and A. Kapoor, Light Met. 2011, 985 (2011).

    Google Scholar 

  20. M. Sørlie and H. Gran, Light Met. 1992, 779 (1992).

    Google Scholar 

  21. D. Richard, M. Fafard, R. Lacroix, P. CleHry, and Y. Maltais, J. Mater. Process. Technol. 132, 119 (2003).

    Article  Google Scholar 

  22. L.D. Landau, J.S. Bell, M.J. Kearsley, L.P. Pitaevskii, E.M. Lifshitz, and J.B. Sykes, Electrodynamics of Continuous Media, chap. 1, vol. 8 (New York: Elsevier, 1984), pp. 1–33.

  23. E.E. Antonova and D.C. Looman (Paper presented at the IEEE 24th International Conference on Thermoelectrics, Canonsburg, PA, 2005).

  24. B. Cockburn and C.W. Shu, Math. Comput. 52, 411 (1989).

    MATH  MathSciNet  Google Scholar 

  25. W.H. Reed and T.R. Hill, Los Alamos Scientific Laboratory, 1973, unpublished research.

  26. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford: Clarendon Press, 1957).

    MATH  Google Scholar 

  27. ANSYS Inc., ANSYS Mechanical Theory Guide (ANSYS, Canonsburg, PA, 2009).

  28. J.C. Simo and T.A. Laursen, Comput. Struct. 42, 97 (1992).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brimmo, A.T., Hassan, M.I. Modeling the Electrical Contact Resistance at Steel–Carbon Interfaces. JOM 68, 49–58 (2016). https://doi.org/10.1007/s11837-015-1665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1665-4

Keywords

Navigation