Skip to main content
Log in

The Effect of Electrode Gap Distance on the Synthesis of Carbon Materials by Using Solution Plasma Process

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Carbon nanomaterials were synthesized by using the solution plasma process and the carbon structure was precisely controlled through adjusting electrode gap distances. Transmission electron microscope and diffraction images showed ordered graphitic layers and clear ring patterns when the electrode distance was wider. The measurement of conductive properties has been improved approximately 400 times from 19 k Ω cm to 47 Ω cm, and the C/H ratio from the result of elemental analysis decreased from 0.31 to 0.18 with decreasing resistivity of carbon. These results showed that the electrode distance was an important factor to control the energy input during the synthesis of carbon materials in the plasma/gas zone generated by solution plasma processing and strongly affect the properties of synthesized carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett. 8, 3498–3502 (2008).

    Article  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385–388 (2008).

    Article  Google Scholar 

  3. Z. Xu, Y. Zhang, P. Li, and C. Gao, ACS Nano 6, 7103–7113 (2012).

    Article  Google Scholar 

  4. P.M. Ajayan, Chem. Rev. 99, 1787 (1999).

    Article  Google Scholar 

  5. A. Vaseashta and D. Dimova-Malinovska, Sci. Tech. Adv. Mater. 6, 312–318 (2005).

    Article  Google Scholar 

  6. N. Sinha and J.T.W. Yeow, IEEE Trans. Nanobiosci. 5, 180–195 (2005).

    Article  Google Scholar 

  7. D.S. Su and R. Scholgl, Chem. Sus. Chem. 3, 136–168 (2010).

    Article  Google Scholar 

  8. J. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, and H. Dai, Cancer Res. 68, 6652–6660 (2008).

    Article  Google Scholar 

  9. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y. Li, W. Kim, P.Z. Utz, and H. Dai, Appl. Phys. Sci. 100, 4984–4989 (2002).

    Google Scholar 

  10. N.W.S. Kam and H. Dai, J. Am. Chem. Soc. 127, 6021–6026 (2005).

    Article  Google Scholar 

  11. H. Yang, S. Amiruddin, H.J. Bang, Y.-K. Sun, and J. Prakash, J. Ind. Eng. Chem. (Seoul, Republic of Korea) 12, 12–38 (2006).

    Google Scholar 

  12. B. Scrosati, Chem. Rec. 5, 286–297 (2005).

    Article  Google Scholar 

  13. M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R.J. Staniewicz, J. Power Sources 146, 90–96 (2005).

    Article  Google Scholar 

  14. M. Broussely, G.-A. Nazri, and G. Pistoia, eds., Lithium Batteries (Norwell, MA: Kluwer Academic Publishers, 2004), pp. 645–685.

    Google Scholar 

  15. C. Fellner and J. Newman, J. Power Sources 85, 229–236 (2000).

    Article  Google Scholar 

  16. Y. Nishi, K. Katayama, J. Shigetomi, and H. Horie, 13th Annual Battery Conference on Applications and Advances, pp. 31–36 (1998).

  17. D. Bechtold, T. Brohm, M. Maul, and E. Meissner, 38th Proceedings of Power Sources Conference, pp. 508–511 (1998).

  18. U. Koehler, F.J. Kruger, J. Kuempers, M. Maul, E. Niggemann, and H.H. Schoenfelder, 32nd Proceedings of Intersociety Energy Conversion Engineering Conference, pp. 93–98 (1997).

  19. J. Kang, O.L. Li, and N. Saito, Nanoscale 60, 292–298 (2013).

    Google Scholar 

  20. O.L. Li, J. Kang, K. Urashima, and N. Saito, J. Inst. Electrostat. Jpn. 37, 22–27 (2013).

    Google Scholar 

  21. H.S. Lee, M.A. Bratescu, T. Ueno, and N. Saito, RSC Adv. (2014). doi:10.1039/c4ra03253e.

    Google Scholar 

  22. S.P. Cho, M.A. Bratescu, N. Saito, and O. Takai, Nanotechnology 22, 455701 (2011).

    Article  Google Scholar 

  23. M.A. Bratescu, S.P. Cho, and O. Takai, N. Saito. J. Phys. Chem. C 115, 24569 (2011).

    Article  Google Scholar 

  24. A. Watanaphanit, G. Panomsuwam, and N. Saito, RSC Adv. (2013). doi:10.1039/c3ra45029e.

    Google Scholar 

  25. J. Kang and N. Saito, RSC Adv. (2015). doi:10.1039/c5ra04220h.

    Google Scholar 

  26. G. Panomsuwan, N. Saito, and T. Ishizaki, J. Mater. Chem. A (2015). doi:10.1039/c5ta00244c.

    Google Scholar 

  27. G. Panomsuwan, N. Saito, and T. Ishizaki, Phys. Chem. Chem. Phys. 17, 6227 (2015).

    Article  Google Scholar 

  28. D.W. Kim, O.L. Li, and N. Saito, Phys. Chem. Chem. Phys. (2014). doi:10.1039/c4cp03868a.

    Google Scholar 

  29. P. Pootawang, N. Saito, O. Takai, and S.Y. Lee, Nanotechnology 23, 395602 (2012).

    Article  Google Scholar 

  30. A. Watanaphanit and N. Saito, Polym. Degrad. Stab. 98, 1072–1080 (2013).

    Article  Google Scholar 

  31. A.C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414–075426 (2001).

    Article  Google Scholar 

  32. M.C. Schabel and J.L. Martins, Phys. Rev. B: Condens. Matter Mater. Phys. 46, 7185 (1992).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology (JST) Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagahiro Saito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Ueno, T. & Saito, N. The Effect of Electrode Gap Distance on the Synthesis of Carbon Materials by Using Solution Plasma Process. JOM 67, 2550–2556 (2015). https://doi.org/10.1007/s11837-015-1660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1660-9

Keywords

Navigation