Advertisement

JOM

, Volume 67, Issue 12, pp 2788–2801 | Cite as

High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy

  • Amirhossein Khalajhedayati
  • Timothy J. Rupert
Article

Abstract

Nanocrystalline Cu-3 at.% Zr powders with ~20 nm average grain size were created with mechanical alloying and their thermal stability was studied from 550–950°C. Annealing drove Zr segregation to the grain boundaries, which led to the formation of amorphous intergranular complexions at higher temperatures. Grain growth was retarded significantly, with 1 week of annealing at 950°C, or 98% of the solidus temperature, only leading to coarsening of the average grain size to 54 nm. The enhanced thermal stability can be connected to both a reduction in grain boundary energy with doping as well as the precipitation of ZrC particles. High mechanical strength is retained even after these aggressive heat treatments, showing that complexion engineering may be a viable path toward the fabrication of bulk nanostructured materials with excellent properties.

Keywords

High Resolution Transmission Electron Microscopy Boundary Energy Boundary Structure Transmission Electron Microscopy Sample High Resolution Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the U.S. Army Research Office under Grant W911NF-12-1-0511. Materials characterization was performed at the Laboratory for Electron and X-ray Instrumentation (LEXI) at UC Irvine, using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space–Time Limit (CHE-082913).

References

  1. 1.
    M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).CrossRefGoogle Scholar
  2. 2.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
  3. 3.
    Y.T. Zhu, X.Z. Liao, and X.L. Wu, Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
  4. 4.
    M.A. Tschopp, H.A. Murdoch, L.J. Kecskes, and K.A. Darling, JOM 66, 1000 (2014).CrossRefGoogle Scholar
  5. 5.
    H.Q. Li, H. Choo, Y. Ren, T.A. Saleh, U. Lienert, P.K. Liaw, and F. Ebrahimi, Phys. Rev. Lett. 101, 015502 (2008).CrossRefGoogle Scholar
  6. 6.
    H.A. Padilla and B.L. Boyce, Exp. Mech. 50, 5 (2010).CrossRefGoogle Scholar
  7. 7.
    T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).CrossRefGoogle Scholar
  8. 8.
    L. Liu, Y. Li, and F. Wang, J. Mater. Sci. Technol. 26, 1 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Suryanarayana and C.C. Koch, Hyperfine Interact. 130, 5 (2000).CrossRefGoogle Scholar
  10. 10.
    P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
  11. 11.
    J.A. Sharon, H.A.I. Padilla, and B.L. Boyce, J. Mater. Res. 28, 1539 (2013).CrossRefGoogle Scholar
  12. 12.
    K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood, Mater. Sci. Eng. A 527, 3572 (2010).CrossRefGoogle Scholar
  13. 13.
    R.A. Andrievski, J. Mater. Sci. 49, 1449 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Pantleon and M.A.J. Somers, Mater. Sci. Eng. A 528, 65 (2010).CrossRefGoogle Scholar
  15. 15.
    T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).CrossRefGoogle Scholar
  16. 16.
    C. Suryanarayana and N. Al-Aqeeli, Prog. Mater. Sci. 58, 383 (2013).CrossRefGoogle Scholar
  17. 17.
    C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones, J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
  18. 18.
    A.J. Detor and C.A. Schuh, Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
  19. 19.
    F. Zhou, J. Lee, and E.J. Lavernia, Scripta Mater. 44, 2013 (2001).CrossRefGoogle Scholar
  20. 20.
    J. Weissmuller, Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
  21. 21.
    J. Weissmuller, J. Mater. Res. 9, 4 (1994).CrossRefGoogle Scholar
  22. 22.
    H.A. Murdoch and C.A. Schuh, J. Mater. Res. 28, 2154 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Bakker, Enthalpies in Alloys: Miedema’s Semi-Empirical Model (Zurich: Trans Tech Publications, 1998), p. 1–92.Google Scholar
  24. 24.
    M. Zhu, Z.F. Wu, M.Q. Zeng, L.Z. Ouyang, and Y. Gao, J. Mater. Sci. 43, 3259 (2008).CrossRefGoogle Scholar
  25. 25.
    K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Comput. Mater. Sci. 84, 255 (2014).CrossRefGoogle Scholar
  26. 26.
    P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Acta Mater. 62, 1 (2014).CrossRefGoogle Scholar
  27. 27.
    E.W. Hart, Scripta Metall. 2, 179 (1968).CrossRefGoogle Scholar
  28. 28.
    D.R. Clarke and G. Thomas, J. Am. Ceram. Soc. 60, 491 (1977).CrossRefGoogle Scholar
  29. 29.
    S.J. Dillon, M.P. Harmer, and J. Luo, JOM 61, 38 (2009).CrossRefGoogle Scholar
  30. 30.
    L.K.V. Lou, T.E. Mitchell, and A.H. Heuer, J. Am. Ceram. Soc. 61, 392 (1978).CrossRefGoogle Scholar
  31. 31.
    O.A. Kogtenkova, S.G. Protasova, A.A. Mazilkin, B.B. Straumal, P. Zieba, T. Czeppe, and B. Baretzky, J. Mater. Sci. 47, 8367 (2012).CrossRefGoogle Scholar
  32. 32.
    E. Jud, Z. Zhang, W. Sigle, and L.J. Gauckler, J. Electroceram. 16, 191 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Bhattacharyya, A. Subramaniam, C.T. Koch, R.M. Cannon, and M. Ruhle, Mater. Sci. Eng. A 422, 92 (2006).CrossRefGoogle Scholar
  34. 34.
    G.B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguyen-Manh, M. Doblinger, R.L. Satet, M.J. Hoffmann, and D.J.H. Cockayne, Appl. Phys. Lett. 87, 061911 (2005).CrossRefGoogle Scholar
  35. 35.
    S.Y. Choi, D.Y. Yoon, and S.J.L. Kang, Acta Mater. 52, 3721 (2004).CrossRefGoogle Scholar
  36. 36.
    S.L. Ma, K.M. Asl, C. Tansarawiput, P.R. Cantwell, M.H. Qi, M.P. Harmer, and J. Luo, Scripta Mater. 66, 203 (2012).CrossRefGoogle Scholar
  37. 37.
    D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).CrossRefGoogle Scholar
  38. 38.
    M. Tang, W.C. Carter, and R.M. Cannon, J. Mater. Sci. 41, 7691 (2006).CrossRefGoogle Scholar
  39. 39.
    S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).CrossRefGoogle Scholar
  40. 40.
    A. Kundu, K.M. Asl, J. Luo, and M.P. Harmer, Scripta Mater. 68, 146 (2013).CrossRefGoogle Scholar
  41. 41.
    J. Luo, H.K. Cheng, K.M. Asl, C.J. Kiely, and M.P. Harmer, Science 333, 1730 (2011).CrossRefGoogle Scholar
  42. 42.
    W. Sigle, G. Richter, M. Ruhle, and S. Schmidt, Appl. Phys. Lett. 89, 121911 (2006).CrossRefGoogle Scholar
  43. 43.
    Z.L. Pan and T.J. Rupert, Comput. Mater. Sci. 93, 206 (2014).CrossRefGoogle Scholar
  44. 44.
    Z.L. Pan and T.J. Rupert, Acta Mater. 89, 205 (2015).CrossRefGoogle Scholar
  45. 45.
    J. Chen, L. Lu, and K. Lu, Scripta Mater. 54, 1913 (2006).CrossRefGoogle Scholar
  46. 46.
    Y.M. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).CrossRefGoogle Scholar
  47. 47.
    D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
  48. 48.
    Y. Li, Q. Guo, J.A. Kalb, and C.V. Thompson, Science 322, 1816 (2008).CrossRefGoogle Scholar
  49. 49.
    Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 1349 (2003).CrossRefGoogle Scholar
  50. 50.
    C.E. Krill and R. Birringer, Philos. Mag. A 77, 621 (1998).CrossRefGoogle Scholar
  51. 51.
    I. MacLaren, Ultramicroscopy 99, 103 (2004).CrossRefGoogle Scholar
  52. 52.
    A.J. Detor, M.K. Miller, and C.A. Schuh, Philos. Mag. Lett. 87, 581 (2007).CrossRefGoogle Scholar
  53. 53.
    J.Y. Xiang, S.C. Liu, W.T. Hu, Y. Zhang, C.K. Chen, P. Wang, J.L. He, D.L. Yu, B. Xu, Y.F. Lu, Y.J. Tian, and Z.Y. Liu, J. Eur. Ceram. Soc. 31, 1491 (2011).CrossRefGoogle Scholar
  54. 54.
    A.S. Khan, B. Farrokh, and L. Takacs, J. Mater. Sci. 43, 3305 (2008).CrossRefGoogle Scholar
  55. 55.
    A.S. Khan, H.Y. Zhang, and L. Takacs, Int. J. Plast. 16, 1459 (2000).CrossRefzbMATHGoogle Scholar
  56. 56.
    M.A. Atwater, R.O. Scattergood, and C.C. Koch, Mater. Sci. Eng. A 559, 250 (2013).CrossRefGoogle Scholar
  57. 57.
    P.C. Millett, R.P. Selvam, and A. Saxena, Acta Mater. 55, 2329 (2007).CrossRefGoogle Scholar
  58. 58.
    L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
  59. 59.
    D.G. Morris and M.A. Morris, Acta Metall. Mater. 39, 1763 (1991).CrossRefGoogle Scholar
  60. 60.
    T. Frolov, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 60, 2158 (2012).CrossRefGoogle Scholar
  61. 61.
    W. Xu, L. Li, M. Saber, C. Koch, Y. Zhu, and R. Scattergood, Metall. Mater. Trans. A 46, 4394 (2015).CrossRefGoogle Scholar
  62. 62.
    S.J. Dillon and M.P. Harmer, J. Am. Ceram. Soc. 91, 2304 (2008).CrossRefGoogle Scholar
  63. 63.
    S.J. Dillon and M.P. Harmer, J. Am. Ceram. Soc. 91, 2314 (2008).CrossRefGoogle Scholar
  64. 64.
    M.P. Harmer, Science 332, 182 (2011).CrossRefGoogle Scholar
  65. 65.
    J. Luo, Appl. Phys. Lett. 95, 071911 (2009).CrossRefGoogle Scholar
  66. 66.
    G. Duscher, M.F. Chisholm, U. Alber, and M. Ruhle, Nat. Mater. 3, 621 (2004).CrossRefGoogle Scholar
  67. 67.
    D. Arias and J.P. Abriata, Bull. Alloy Phase Diagr. 11, 452 (1990).CrossRefGoogle Scholar
  68. 68.
    J. Luo, Crit. Rev. Solid State 32, 67 (2007).CrossRefGoogle Scholar
  69. 69.
    J. Luo, Curr. Opin. Solid State Mater. Sci. 12, 81 (2008).CrossRefGoogle Scholar
  70. 70.
    N.X. Zhou and J. Luo, Acta Mater. 91, 202 (2015).CrossRefGoogle Scholar
  71. 71.
    M.A. Atwater, H. Bahmanpour, R.O. Scattergood, and C.C. Koch, J. Mater. Sci. 48, 220 (2013).CrossRefGoogle Scholar
  72. 72.
    T.J. Rupert, J.C. Trenkle, and C.A. Schuh, Acta Mater. 59, 1619 (2011).CrossRefGoogle Scholar
  73. 73.
    Z. Zhang and D.L. Chen, Scripta Mater. 54, 1321 (2006).CrossRefGoogle Scholar
  74. 74.
    D. Tabor, J. Inst. Met. 79, 1 (1951).Google Scholar
  75. 75.
    N.Q. Vo, J. Schafer, R.S. Averback, K. Albe, Y. Ashkenazy, and P. Bellon, Scripta Mater. 65, 660 (2011).CrossRefGoogle Scholar
  76. 76.
    R.K. Rajgarhia, D.E. Spearot, and A. Saxena, J. Mater. Res. 25, 411 (2010).CrossRefGoogle Scholar
  77. 77.
    S. Ozerinc, K.P. Tai, N.Q. Vo, P. Bellon, R.S. Averback, and W.P. King, Scripta Mater. 67, 720 (2012).CrossRefGoogle Scholar
  78. 78.
    T.J. Rupert, J.R. Trelewicz, and C.A. Schuh, J. Mater. Res. 27, 1285 (2012).CrossRefGoogle Scholar
  79. 79.
    C. Brandl, T.C. Germann, and A. Misra, Acta Mater. 61, 3600 (2013).CrossRefGoogle Scholar
  80. 80.
    C. Gammer, C. Mangler, C. Rentenberger, and H.P. Karnthaler, Scripta Mater. 63, 312 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Amirhossein Khalajhedayati
    • 1
  • Timothy J. Rupert
    • 1
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations