JOM

, Volume 67, Issue 12, pp 2908–2913 | Cite as

Elevated Temperature, In Situ Micromechanical Characterization of a High Temperature Ternary Shape Memory Alloy

  • J. M. Wheeler
  • C. Niederberger
  • R. Raghavan
  • G. Thompson
  • M. Weaver
  • J. Michler
Article

Abstract

The microthermomechanical behavior of a precipitation-hardenable Ni-48Ti-25Pd (at.%) shape memory alloy has been investigated as a function of temperature. Micropillars were fabricated within a large 〈145〉-oriented grain and compressed in situ in the SEM at elevated temperatures corresponding to the martensite and austenite phase transformation temperatures. The precipitation-strengthened alloys exhibited stable pseudoelastic behavior with little or no residual strains when near the transformation temperatures. In the plastic regime, slip was observed to occur via pencil glide, circumventing the fine scale precipitates along multiple slip planes.

References

  1. 1.
    P.G. Lindquist and C.M. Wayman, Shape Memory and Transformation Behavior of Martensitic Ti-Pd-Ni and Ti-Pt-Ni Alloys.Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman (London: Butterworth-Heinemann, 1990).Google Scholar
  2. 2.
    J. Ma, I. Karaman, and R.D. Noebe, Int. Mater. Rev. 55, 257 (2010).CrossRefGoogle Scholar
  3. 3.
    G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, and R.D. Noebe, Metall. Mater. Trans. A 41, 3065 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, and T. Suzuki, Intermetallics 6, 291 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Noebe, I. Santo Padula, G. Bigelow, O. Rios, A. Garg, and B. Lerch, Properties of a Ni19. 5Pd30Ti50. 5 High-Temperature Shape Memory Alloy in Tension and Compression. Smart Structures and Materials (London: International Society for Optics and Photonics, 2006), p. 617010.Google Scholar
  6. 6.
    L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R. Noebe, and M. Mills, Acta Mater. 58, 4660 (2010).CrossRefGoogle Scholar
  7. 7.
    T.T. Sasaki, B.C. Hornbuckle, R.D. Noebe, G.S. Bigelow, M.L. Weaver, and G.B. Thompson, Metall. Mater. Trans. A 44, 1388 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, and G. Eggeler, Mater. Sci. Eng. A 538, 265 (2012).CrossRefGoogle Scholar
  9. 9.
    D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Acta Mater. 57, 3549 (2009).CrossRefGoogle Scholar
  10. 10.
    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. (2015). doi:10.1016/j.cossms.2015.02.002
  11. 11.
    J.M. Wheeler and J. Michler, Rev. Sci. Instrum. 84, 045103 (2013).CrossRefGoogle Scholar
  12. 12.
    J.M. Wheeler, P. Brodard, and J. Michler, Philos. Mag. 92, 3128 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Korte and W.J. Clegg, Scripta Mater. 60, 807 (2009).CrossRefGoogle Scholar
  14. 14.
    J.M. Wheeler, R. Raghavan, and J. Michler, Mater. Sci. Eng. A 528, 8750 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler, JOM 67, 1684 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Laboratory for Mechanics of Materials and NanostructuresEmpa, Swiss Federal Laboratories for Materials Science and TechnologyThunSwitzerland
  2. 2.Laboratory for Nanometallurgy, Department of Materials ScienceETH ZürichZurichSwitzerland
  3. 3.Structure and Nano-/Micromechanics of MaterialsMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  4. 4.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations