Skip to main content
Log in

A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature (T g) and the glass crystallization temperature (T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Mostafa, S. El-Hemaly, E. Al-Wakeel, S. El-Korashy, and P. Brown, Cem. Concr. Res. 31, 899 (2001).

    Article  Google Scholar 

  2. N.Y. Mostafa and E.A. Kishar, Silicate Ind. 72, 125 (2007).

    Google Scholar 

  3. A. Oner and S. Akyuz, Cem. Concr. Compos. 291, 505 (2007).

    Article  Google Scholar 

  4. N.Y. Mostafa, S.A.S. El-Hemaly, E.I. Al-Wakeel, S.A. El-Korashy, and P.W.A. Brown, Cem. Concr. Res. 31, 475 (2001).

    Article  Google Scholar 

  5. N.Y. Mostafa, Cem. Concr. Res. 35, 1349 (2004).

    Article  Google Scholar 

  6. M. Erol, S. Kucukbayrak, and A. Ersoy-Mericboyu, J. Non Cryst. Solids 35, 2609 (2009).

    Google Scholar 

  7. H. Liu, H. Lu, D. Chen, H. Wang, H. Xu, and R. Zhang, Ceram. Int. 35, 3181 (2009).

    Article  Google Scholar 

  8. C. Fredericci, E.D. Zanotto, and E.C. Ziemath, J. Non Cryst. Solids. 273, 64 (2000).

    Article  Google Scholar 

  9. E. Bernardo, R. Castellan, S. Hreglich, and I. Lancellotti, J. Eur. Ceram. Soc. 26, 3335 (2006).

    Article  Google Scholar 

  10. M. Engholm, L. Norin, and D. Aberg, Opt. Lett. 32, 3352 (2007).

    Article  Google Scholar 

  11. P. Frugier, C. Martin, I. Ribet, T. Advocat, and S. Gin, J. Nucl. Mater. 346, 194 (2005).

    Article  Google Scholar 

  12. A. Goel, A.A. Reddy, M.J. Pascual, L. Gremillard, A. Malchere, and J.M.F. Ferreira, J. Mater. Chem. 22, 10042 (2012).

    Article  Google Scholar 

  13. Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J.-L. Adam, J. Ren, and G. Chen, J. Phys. Chem. C 115, 13056 (2011).

    Article  Google Scholar 

  14. Y. Zhao, D. Chen, Y. Bi, and M. Long, Ceram. Int. 38, 2495 (2012).

    Article  Google Scholar 

  15. T.W. Cheng and J.P. Chiu, Miner. Eng. 16, 205 (2003).

    Article  Google Scholar 

  16. R.K. Vempati, A. Rao, T.R. Hess, D.L. Cocke, and H.V. Lauer Jr, Cem. Concr. Res. 24, 1153 (1994).

    Article  Google Scholar 

  17. T. Uchino, T. Sakka, and M. Iwasaki, J. Am. Ceram. Soc. 74, 306 (1991).

    Article  Google Scholar 

  18. M. Sroda and Cz. Paluszkiewicz, Vib. Spectrosc. 48, 246 (2008).

    Article  Google Scholar 

  19. B.N. Roy, J. Am. Ceram. Soc. 73, 846 (1990).

    Article  Google Scholar 

  20. M.Y.A. Mollah, T.R. Hess, and D.L. Cocke, Cem. Concr. Res. 24, 109 (1994).

    Article  Google Scholar 

  21. R. Hanna and G.J. Su, J. Am. Ceram. Soc. 47, 597 (1964).

    Article  Google Scholar 

  22. R. Hanna, J. Phys. Chem. 69, 3846 (1965).

    Article  Google Scholar 

  23. J.R. Sweet and W.B. White, Phys. Chem. Glasses 10, 246 (1969).

    Google Scholar 

  24. J.P. Hamilton, S.L. Brantley, C.G. Pantano, L.J. Criscenti, and J.D. Kubicki, Geochim. Cosmochim. Acta 65, 3683 (2001).

    Article  Google Scholar 

  25. P.L. Higby, J.E. Shelby, and R.A. Condrate, Phys. Chem. Glasses 28, 115 (1987).

    Google Scholar 

  26. P.F. McMillan, G.H. Wolf, and B.T. Poe, Chem. Geol. 96, 351 (1992).

    Article  Google Scholar 

  27. K. Trachenko, M.T. Dove, V. Brazhkin, and F.S. El’kin, Phys. Rev. Lett. 93, 135502 (2004).

    Article  Google Scholar 

  28. M.J. Pomeroy, E. Nestor, R. Ramesh, and S. Hampshire, J. Am. Ceram. Soc. 88, 875 (2005).

    Article  Google Scholar 

  29. H. Darwish and M.M. Gomaa, J. Mater. Sci.: Mater. Electron. 17, 35 (2006).

    Google Scholar 

  30. Z. Wang, Y. Hu, H. Lu, F. Yu, and J. Non-Cryst, Solids 354, 1128 (2008).

    Google Scholar 

  31. M.M. Gomaa, H. Darwish, and S.M. Salman, J. Mater. Sci.: Mater. Electron. 19, 5 (2008).

    Google Scholar 

  32. M.A. Kanehisa, J. Non Cryst. Solids. 151, 155 (1992).

    Article  Google Scholar 

  33. B.H. Jung and H.S. Kim, J. Non Cryst. Solids. 336, 96 (2004).

    Article  MathSciNet  Google Scholar 

  34. V. Dimitrov, J. Solid State Chem. 163, 100 (2002).

    Article  Google Scholar 

  35. V. Sundar, R. Yimnirun, B.G. Aitken, and R.E. Newnham, Mater. Res. Bull. 33, 1307 (1998).

    Article  Google Scholar 

  36. P. Subbalakshmi and N. Veeraiah, Mater. Lett. 56, 880 (2002).

    Article  Google Scholar 

  37. F.T. Wallenberger, Advanced inorganic fibers: Processes, structures, properties, applications, 2nd ed. (Boston: Kluwer, 2000), p. 129.

    Book  Google Scholar 

  38. F.T. Wallenberger and A. Smrcek, Int. J. Appl. Glass. Sci. 1, 151 (2010).

    Article  Google Scholar 

  39. F.T. Wallenberger, R.J. Hicks, and A.T. Bierhals, Am. Ceram. Soc. Bull. 85, 38 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong Province (No. ZR2012EMM019) and National Natural Science Foundation (Nos. 51172093, 51042009). We also express our appreciation to Prof. Shiquan Liu and Dr. Chengzhang Wu for advices on expertise and writing. Again, we are appreciate to the departments and assistants referred during our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, S., Liu, H. et al. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag. JOM 67, 2754–2758 (2015). https://doi.org/10.1007/s11837-015-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1624-0

Keywords

Navigation