Skip to main content
Log in

Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness (H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.S. Was, Trans. Am. Nucl. Soc. 98, 1023 (2008).

    Google Scholar 

  2. F.U. Naab, E.A. West, O.F. Toader, and G.S. Was, AIP Conf. Proc. 1336, 325 (2011).

    Article  Google Scholar 

  3. G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jensson, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, and P.L. Andreson, J. Nucl. Mater. 300, 198 (2002).

    Article  Google Scholar 

  4. P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy, J. Nucl. Mater. 425, 136 (2012).

    Article  Google Scholar 

  5. P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, J. Nucl. Mater. 375, 135 (2008).

    Article  Google Scholar 

  6. D. Kiener, A.M. Minor, O. Anderoglu, Y.Q. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724 (2012).

    Article  Google Scholar 

  7. J.P. Ligda, Q. Wei, W.N. Sharpe, and B.E. Schuster, Dynamic Behavior of Materials, 2014th ed. (New York: Springer, 2013), p. 427.

    Google Scholar 

  8. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).

    Article  Google Scholar 

  9. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 2015.

  10. M.R. de Figueiredo, M.D. Abad, A.J. Harris, C. Mitterer, and P. Hosemann, Thin Solid Films 578, 20 (2015).

    Article  Google Scholar 

  11. J.M. Wheeler, V. Maier, K. Durst, M. Goken, and J. Michler, Mater. Sci. Eng. A 585, 108 (2013).

    Article  Google Scholar 

  12. M. Kreuzeder, M.D. Abad, M.-M. Primorac, P. Hosemann, V. Maier, and D. Kiener, J. Mater. Sci. 50, 634 (2014).

    Article  Google Scholar 

  13. M.-M. Primorac, M.D. Abad, P. Hosemann, M. Kreuzeder, V. Maier, and D. Kiener, Mater. Sci. Eng. A 625, 296 (2015).

    Article  Google Scholar 

  14. J.F. Ziegler and J.P. Biersack, SRIM Program (Yorktown, NY: IBM Corp., 2008).

    Google Scholar 

  15. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, and G.S. Was, J. Nucl. Mater. 351, 162 (2006).

    Article  Google Scholar 

  16. D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119 (2006).

    Article  Google Scholar 

  17. J.M. Wheeler, R.A. Oliver, and T.W. Clyne, Diam. Relat. Mater. 19, 1348 (2010).

    Article  Google Scholar 

  18. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  19. C. Shin, S. Lim, H. Jin, and P. Hosemann, J. Kwon J. Nucl. Mater. 444, 43 (2014).

    Article  Google Scholar 

  20. M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng. A 400–401, 268 (2005).

    Article  Google Scholar 

  21. H. Wörgötter, D. Kiener, J.M. Purswani, D. Gall, and G. Dehm, BHM Berg. Hüttenmänn. Monatshefte 153, 257 (2008).

    Article  Google Scholar 

  22. I. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  23. 304/304L Stainless Steel Production Data Bulletin (AK Steel Corporation 2013). http://www.aksteel.com/pdf/markets_products/stainless/austenitic/304_304l_data_bulletin.pdf. Accessed 12 May 2015.

  24. A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, and P. Hosemann, J. Nucl. Mater. 458, 70 (2015).

    Article  Google Scholar 

  25. P. Hosemann, A. Reichard, A. Lupinacci, C. Howard, H. Vo, M.D. Abad, D. Kaoumi, and P. Chou, Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors (2015).

  26. J. Outinen and P. Makelainen, Fire Mater. 28, 237 (2004).

    Article  Google Scholar 

  27. D.J. Edwards, A. Schemer-Kohrn, and S. Bruemmer, Characterization of Neutron-Irradiated 300-Series Stainless Steels (Palo Alto, CA: EPRI, 2006).

Download references

Acknowledgements

We acknowledge EPRI for funding, the University of Michigan for irradiating samples, DOE-NEUP for providing partial funding, the NRC for funding equipment, and the BNC for making the FIB available for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Vo or P. Hosemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, H., Reichardt, A., Howard, C. et al. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature. JOM 67, 2959–2964 (2015). https://doi.org/10.1007/s11837-015-1596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1596-0

Keywords

Navigation