Skip to main content
Log in

Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Owing to their relatively low Young’s modulus, high strength, good resistance to corrosion, and excellent biocompatibility, β-titanium (Ti) alloys have shown great potential for biomedical applications. In β-Ti alloys, carbon can exist in the form of titanium carbide (TiC x ) as well as interstitial atoms. The Ti-C binary phase diagram predicts a carbon solubility value of 0.08 wt.% in β-Ti, which has been used as the carbon limit for a variety of β-Ti alloys. However, noticeable grain boundary TiC x particles have been observed in β-Ti alloys containing impurity levels of carbon well below the predicted 0.08 wt.%. This review focuses its attention on trace carbon (≤0.08 wt.%) in biomedical β-Ti alloys containing niobium (Nb) and molybdenum (Mo), and it discusses the nature and precipitation mechanism of the TiC x particles in these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Niinomi, M. Nakai, and J. Hieda, Acta Biomater. 8, 3888 (2012).

    Article  Google Scholar 

  2. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Scripta Mater. 65, 21 (2011).

    Article  Google Scholar 

  3. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009).

    Article  Google Scholar 

  4. T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, and Y. Seno, Science 300, 464 (2003).

    Article  Google Scholar 

  5. W.F. Ho, C.P. Ju, and J.H. Chern Lin, Biomaterials 20, 2115 (1999).

    Article  Google Scholar 

  6. D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, and F. Pyczak, J. Alloys Compd. 640, 393 (2015).

    Article  Google Scholar 

  7. T. Ahmed and H.J. Rack, J. Mater. Sci. 31, 4267 (1996).

    Article  Google Scholar 

  8. Y.L. Hao, S.J. Li, S.Y. Sun, and R. Yang, Mater. Sci. Eng. A 441, 112 (2006).

    Article  Google Scholar 

  9. L.-J. Xu, S.-L. Xiao, J. Tian, and Y.-Y. Chen, Trans. Nonferrous Met. Soc. China 23, 692 (2013).

    Article  Google Scholar 

  10. K. Miura, N. Yamada, S. Hanada, T.-K. Jung, and E. Itoi, Acta Biomater. 7, 2320 (2011).

    Article  Google Scholar 

  11. M. Yan, M.S. Dargusch, T. Ebel, and M. Qian, Acta Mater. 68, 196 (2014).

    Article  Google Scholar 

  12. M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Mater. Trans. 50, 2716 (2009).

    Article  Google Scholar 

  13. M. Yan, M. Qian, T.T. Song, M.S. Dargusch, and X.S. Wei, MRS Commun. 4, 183 (2014).

    Article  Google Scholar 

  14. H. Choe, S. Abkowitz, S.M. Abkowitz, and D.C. Dunand, Mater. Sci. Eng. A 485, 703 (2008).

    Article  Google Scholar 

  15. M. Yan, M. Qian, C. Kong, and M.S. Dargusch, Acta Biomater. 10, 1014 (2014).

    Article  Google Scholar 

  16. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, J. Mech. Behav. Biomed. Mater. 28, 171 (2013).

    Article  Google Scholar 

  17. R. Banoth, R. Sarkar, A. Bhattacharjee, T.K. Nandy, and G.V.S. Nageswara, Rao. Mater. Des. 67, 50 (2015).

    Article  Google Scholar 

  18. A. Shanaghi, P.K. Chu, A.R. Sabour Rouhaghdam, R. Xu, and T. Hu, Surf. Coat. Technol. 229, 151 (2013).

    Article  Google Scholar 

  19. Y.-J. Kim, H. Chung, and S.-J.L. Kang, Mater. Sci. Eng. A 333, 343 (2002).

    Article  Google Scholar 

  20. M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C.D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi, and R. Scandurra, Biomaterials 28, 595 (2007).

    Article  Google Scholar 

  21. G. Longo, M. Girasole, G. Pompeo, A. Cricenti, C. Misiano, A. Acclavio, A.C. Tizzoni, L. Mazzola, P. Santini, L. Politi, and R. Scandurra, Surf. Coat. Technol. 204, 2605 (2010).

    Article  Google Scholar 

  22. J. Matthew and J. Donachie, Titanium: A Technical Guide (ASM International: Materials Park, 2000).

    Google Scholar 

  23. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, Powder Metall. 57, 2 (2014).

    Article  Google Scholar 

  24. K.S. Suresh, N.P. Gurao, S. Singh, S. Suwas, K. Chattopadhyay, S.V. Zherebtsov, and G.A. Salishchev, Mater. Charact. 82, 73 (2013).

    Article  Google Scholar 

  25. C.R.M. Afonso, P.L. Ferrandini, A.J. Ramirez, and R. Caram, Acta Biomater. 6, 1625 (2010).

    Article  Google Scholar 

  26. M. Niinomi, Biomaterials 24, 2673 (2003).

    Article  Google Scholar 

  27. Y. Yang, P. Castany, M. Cornen, F. Prima, S.J. Li, Y.L. Hao, and T. Gloriant, Acta Mater. 88, 25 (2015).

    Article  Google Scholar 

  28. A. Kazek-Kęsik, M. Krok-Borkowicz, E. Pamuła, and W. Simka, Mater. Sci. Eng. C 43, 172 (2014).

    Article  Google Scholar 

  29. S. Guo, Q. Meng, G. Liao, L. Hu, and X. Zhao, Prog. Nat. Sci. 23, 174 (2013).

    Article  Google Scholar 

  30. A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, and H. Kyogoku, J. Alloys Compd. 577, S408 (2013).

    Article  Google Scholar 

  31. H. Hosoda, Y. Horiuchi, T. Inamura, K. Wakashima, H.Y. Kim, and S. Miyazaki, Mater. Sci. Forum 638–642, 2046 (2010).

    Article  Google Scholar 

  32. Y.G. Li, P.A. Blenkinsop, M.H. Loretto, D. Rugg, and W. Voice, Acta Mater. 47, 2889 (1999).

    Article  Google Scholar 

  33. W. Sekimoto, H. Tsuda, and S. Mori, Mater. Trans. 53, 1405 (2012).

    Article  Google Scholar 

  34. F. Kafkas and T. Ebel, J. Alloys Compd. 617, 359 (2014).

    Article  Google Scholar 

  35. N.T.C. Oliveira, G. Aleixo, R. Caram, and A.C. Guastaldi, Mater. Sci. Eng. A 452–453, 727 (2007).

    Article  Google Scholar 

  36. H.M. Silva, S.G. Schneider, and C.M. Neto, Mater. Sci. Eng. C 24, 679 (2004).

    Article  Google Scholar 

  37. J.R. Severino Martins and C.R. Grandini, J. Appl. Phys. 111, 083535 (2012).

    Article  Google Scholar 

  38. D. Zhao (Dr.-Ing. Doctor Thesis, Brandenburgische Technische Universität Cottbus-Senftenberg, 2014).

  39. M. Semlitsch, Clin. Mater. 2, 1 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Young Teacher Growth Plan (File No. 531107040850). M. Qian acknowledges the financial support of the Australian Research Council (ARC) through ARC LP140100607. D. Zhao and T. Ebel are grateful to Prof. Florian Pyczak and Prof. Regine Willumeit from Helmholtz-Zentrum Geesthacht for the assistance and input. Dr. Shenglu Lu of The University of Queensland is acknowledged for the calculations of the pseudo-binary (Ti-15V)-C phase diagram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Ebel, T., Yan, M. et al. Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress. JOM 67, 2236–2243 (2015). https://doi.org/10.1007/s11837-015-1590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1590-6

Keywords

Navigation