Nucleation and Growth of Tin in Pb-Free Solder Joints

Abstract

The solidification of Pb-free solder joints is overviewed with a focus on the formation of the βSn grain structure and grain orientations. Three solders commonly used in electronics manufacturing, Sn-3Ag-0.5Cu, Sn-3.5Ag, and Sn-0.7Cu-0.05Ni, are used as case studies to demonstrate that (I) growth competition between primary dendrites and eutectic fronts during growth in undercooled melts is important in Pb-free solders and (II) a metastable eutectic containing NiSn4 forms in Sn-3.5Ag/Ni joints. Additionally, it is shown that the substrate (metallization) has a strong influence on the nucleation and growth of tin. We identify Co, Pd, and Pt substrates as having the potential to control solidification and microstructure formation. In the case of Pd and Pt substrates, βSn is shown to nucleate on the PtSn4 or PdSn4 intermetallic compound (IMC) reaction layer at relatively low undercooling of ~4 K, even for small solder ball diameters down to <200 μm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Esaka, K. Shinozuka, and M. Tamura, Mater. Trans. 46, 916 (2005).

    Article  Google Scholar 

  2. 2.

    R.J. Schaefer and D.J. Lewis, Metall. Mater. Trans. A 36, 2775 (2005).

    Article  Google Scholar 

  3. 3.

    C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, K. Uesugi, T. Nagira, M. Yoshiya, and H. Yasuda, Acta Mater. 59, 4043 (2011).

    Article  Google Scholar 

  4. 4.

    L.M. Hogan, R.W. Kraft, and F.D. Lemkey, Adv. Mater. Res. 5, 83 (1971).

    Google Scholar 

  5. 5.

    P. Magnin and W. Kurz, Acta Metall. 35, 1119 (1987).

    Article  Google Scholar 

  6. 6.

    J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984).

    Article  Google Scholar 

  7. 7.

    R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  Google Scholar 

  8. 8.

    S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih (Paper presented at the 57th IEEE Electronic Components & Technology Conference (ECTC), 2007), pp. 1597–1603.

  9. 9.

    B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362 (2012).

    Article  Google Scholar 

  10. 10.

    J.W. Elmer, E.D. Specht, and M. Kumar, J. Electron. Mater. 39, 273 (2010).

    Article  Google Scholar 

  11. 11.

    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).

    Article  Google Scholar 

  12. 12.

    L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004).

    Article  Google Scholar 

  13. 13.

    S. Yang, Y. Tian, and C. Wang, J. Mater. Sci. Mater. Electron. 21, 1174 (2010).

    Article  Google Scholar 

  14. 14.

    G. Parks, B. Arfaei, M. Benedict, E. Cotts, M. Lu, and E. Perfecto (Paper presented at the 62nd IEEE Electronic Components and Technology Conference (ECTC), 2012), pp. 703–709.

  15. 15.

    I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).

    Article  Google Scholar 

  16. 16.

    S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, and W.K. Choi, JOM 55, 61 (2003).

    Article  Google Scholar 

  17. 17.

    P. Darbandi, T.R. Bieler, F. Pourboghrat, and T.K. Lee, J. Electron. Mater. 42, 201 (2013).

    Article  Google Scholar 

  18. 18.

    A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).

    Article  Google Scholar 

  19. 19.

    E.V. Vernon and S. Weintraub, Proc. Phys. Soc. Sect. B 66, 887 (1953).

    Article  Google Scholar 

  20. 20.

    J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).

    Article  Google Scholar 

  21. 21.

    D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  Google Scholar 

  22. 22.

    C. Kinney, X. Linares, K.O. Lee, and J.W. Morris Jr, J. Electron. Mater. 42, 607 (2013).

    Article  Google Scholar 

  23. 23.

    M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  24. 24.

    C.M. Gourlay, J. Read, K. Nogita, and A.K. Dahle, J. Electron. Mater. 37, 51 (2008).

    Article  Google Scholar 

  25. 25.

    D.V. Ragone, C.M. Adams, and H.F. Taylor, AFS Trans. 64, 653 (1956).

    Google Scholar 

  26. 26.

    K. Nogita and T. Nishimura, Scripta Mater. 59, 191 (2008).

    Article  Google Scholar 

  27. 27.

    R. Schueller, N. Blattau, J. Arnold, and C. Hillman, SMTA J. 23, 18 (2010).

    Google Scholar 

  28. 28.

    H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, and K. Nogita, Microelectron. Reliab. 51, 657 (2011).

    Article  Google Scholar 

  29. 29.

    C.Y. Li, G.J. Chiou, and J.G. Duh, J. Electron. Mater. 35, 343 (2006).

    Article  Google Scholar 

  30. 30.

    V. Vuorinen, H. Yu, T. Laurila, and J.K. Kivilahti, J. Electron. Mater. 37, 792 (2008).

    Article  Google Scholar 

  31. 31.

    C.M. Gourlay, K. Nogita, J. Read, and A.K. Dahle, J. Electron. Mater. 39, 56 (2010).

    Article  Google Scholar 

  32. 32.

    M. Laentzsch (Paper presented at the 1st Electronic Systemintegration Technology Conference, IEEE, 2006), pp. 383–386.

  33. 33.

    A. Donaldson, R. Aspandiar, and K. Doss (Paper presented at the APEX Conference, April 2008).

  34. 34.

    J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).

    Google Scholar 

  35. 35.

    D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  Google Scholar 

  36. 36.

    B. Arfaei, M. Benedict, and E.J. Cotts, J. Appl. Phys. 114, 173506 (2013).

    Article  Google Scholar 

  37. 37.

    Y.C. Huang, S.W. Chen, and K.S. Wu, J. Electron. Mater. 39, 109 (2010).

    Article  Google Scholar 

  38. 38.

    F. Weinberg and B. Chalmers, Can. J. Phys. 30, 488 (1952).

    Article  Google Scholar 

  39. 39.

    G.L. Powell, G.A. Colligan, V.A. Surprenant, and A. Urquhart, Metall. Trans. A 8, 971 (1977).

    Article  Google Scholar 

  40. 40.

    S. O’Hara, J. Cryst. Growth 1, 73 (1967).

    Article  Google Scholar 

  41. 41.

    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu, Mater. Sci. Eng. A 413, 243 (2005).

    Article  Google Scholar 

  42. 42.

    M.G. Cho, S.K. Kang, and H.M. Lee, J. Mater. Res. 23, 1147 (2008).

    Article  Google Scholar 

  43. 43.

    G. Parks, A. Faucett, C. Fox, J. Smith, and E. Cotts, JOM 66, 2311 (2014).

    Article  Google Scholar 

  44. 44.

    S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  Google Scholar 

  45. 45.

    I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).

    Article  Google Scholar 

  46. 46.

    W. Kurz and P. Gilgien, Mater. Sci. Eng. A 178, 171 (1994).

    Article  Google Scholar 

  47. 47.

    S.A. Belyakov and C.M. Gourlay, Mater. Lett. 148, 91 (2015).

    Article  Google Scholar 

  48. 48.

    S.A. Belyakov and C.M. Gourlay, Intermetallics 25, 48 (2012).

    Article  Google Scholar 

  49. 49.

    S.A. Belyakov and C.M. Gourlay, Intermetallics 37, 32 (2013).

    Article  Google Scholar 

  50. 50.

    S.A. Belyakov and C.M. Gourlay, Acta Mater. 71, 56 (2014).

    Article  Google Scholar 

  51. 51.

    A.J. Page and R.P. Sear, J. Am. Chem. Soc. 131, 17550 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nihon Superior Co., Ltd. and the UK EPSRC (Grant # EP/M002241/1) for funding and K. Sweatman for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. M. Gourlay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gourlay, C.M., Belyakov, S.A., Ma, Z.L. et al. Nucleation and Growth of Tin in Pb-Free Solder Joints. JOM 67, 2383–2393 (2015). https://doi.org/10.1007/s11837-015-1582-6

Download citation

Keywords

  • Solder Joint
  • Reaction Layer
  • Intermetallic Layer
  • Solder Ball
  • Coincidence Site Lattice Boundary