Advertisement

JOM

, Volume 67, Issue 10, pp 2383–2393 | Cite as

Nucleation and Growth of Tin in Pb-Free Solder Joints

  • C. M. GourlayEmail author
  • S. A. Belyakov
  • Z. L. Ma
  • J. W. Xian
Article

Abstract

The solidification of Pb-free solder joints is overviewed with a focus on the formation of the βSn grain structure and grain orientations. Three solders commonly used in electronics manufacturing, Sn-3Ag-0.5Cu, Sn-3.5Ag, and Sn-0.7Cu-0.05Ni, are used as case studies to demonstrate that (I) growth competition between primary dendrites and eutectic fronts during growth in undercooled melts is important in Pb-free solders and (II) a metastable eutectic containing NiSn4 forms in Sn-3.5Ag/Ni joints. Additionally, it is shown that the substrate (metallization) has a strong influence on the nucleation and growth of tin. We identify Co, Pd, and Pt substrates as having the potential to control solidification and microstructure formation. In the case of Pd and Pt substrates, βSn is shown to nucleate on the PtSn4 or PdSn4 intermetallic compound (IMC) reaction layer at relatively low undercooling of ~4 K, even for small solder ball diameters down to <200 μm.

Keywords

Solder Joint Reaction Layer Intermetallic Layer Solder Ball Coincidence Site Lattice Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Nihon Superior Co., Ltd. and the UK EPSRC (Grant # EP/M002241/1) for funding and K. Sweatman for valuable discussions.

References

  1. 1.
    H. Esaka, K. Shinozuka, and M. Tamura, Mater. Trans. 46, 916 (2005).CrossRefGoogle Scholar
  2. 2.
    R.J. Schaefer and D.J. Lewis, Metall. Mater. Trans. A 36, 2775 (2005).CrossRefGoogle Scholar
  3. 3.
    C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, K. Uesugi, T. Nagira, M. Yoshiya, and H. Yasuda, Acta Mater. 59, 4043 (2011).CrossRefGoogle Scholar
  4. 4.
    L.M. Hogan, R.W. Kraft, and F.D. Lemkey, Adv. Mater. Res. 5, 83 (1971).Google Scholar
  5. 5.
    P. Magnin and W. Kurz, Acta Metall. 35, 1119 (1987).CrossRefGoogle Scholar
  6. 6.
    J.H. Perepezko, Mater. Sci. Eng. 65, 125 (1984).CrossRefGoogle Scholar
  7. 7.
    R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).CrossRefGoogle Scholar
  8. 8.
    S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih (Paper presented at the 57th IEEE Electronic Components & Technology Conference (ECTC), 2007), pp. 1597–1603.Google Scholar
  9. 9.
    B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362 (2012).CrossRefGoogle Scholar
  10. 10.
    J.W. Elmer, E.D. Specht, and M. Kumar, J. Electron. Mater. 39, 273 (2010).CrossRefGoogle Scholar
  11. 11.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).CrossRefGoogle Scholar
  12. 12.
    L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Yang, Y. Tian, and C. Wang, J. Mater. Sci. Mater. Electron. 21, 1174 (2010).CrossRefGoogle Scholar
  14. 14.
    G. Parks, B. Arfaei, M. Benedict, E. Cotts, M. Lu, and E. Perfecto (Paper presented at the 62nd IEEE Electronic Components and Technology Conference (ECTC), 2012), pp. 703–709.Google Scholar
  15. 15.
    I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).CrossRefGoogle Scholar
  16. 16.
    S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, and W.K. Choi, JOM 55, 61 (2003).CrossRefGoogle Scholar
  17. 17.
    P. Darbandi, T.R. Bieler, F. Pourboghrat, and T.K. Lee, J. Electron. Mater. 42, 201 (2013).CrossRefGoogle Scholar
  18. 18.
    A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).CrossRefGoogle Scholar
  19. 19.
    E.V. Vernon and S. Weintraub, Proc. Phys. Soc. Sect. B 66, 887 (1953).CrossRefGoogle Scholar
  20. 20.
    J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).CrossRefGoogle Scholar
  21. 21.
    D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).CrossRefGoogle Scholar
  22. 22.
    C. Kinney, X. Linares, K.O. Lee, and J.W. Morris Jr, J. Electron. Mater. 42, 607 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).CrossRefGoogle Scholar
  24. 24.
    C.M. Gourlay, J. Read, K. Nogita, and A.K. Dahle, J. Electron. Mater. 37, 51 (2008).CrossRefGoogle Scholar
  25. 25.
    D.V. Ragone, C.M. Adams, and H.F. Taylor, AFS Trans. 64, 653 (1956).Google Scholar
  26. 26.
    K. Nogita and T. Nishimura, Scripta Mater. 59, 191 (2008).CrossRefGoogle Scholar
  27. 27.
    R. Schueller, N. Blattau, J. Arnold, and C. Hillman, SMTA J. 23, 18 (2010).Google Scholar
  28. 28.
    H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, and K. Nogita, Microelectron. Reliab. 51, 657 (2011).CrossRefGoogle Scholar
  29. 29.
    C.Y. Li, G.J. Chiou, and J.G. Duh, J. Electron. Mater. 35, 343 (2006).CrossRefGoogle Scholar
  30. 30.
    V. Vuorinen, H. Yu, T. Laurila, and J.K. Kivilahti, J. Electron. Mater. 37, 792 (2008).CrossRefGoogle Scholar
  31. 31.
    C.M. Gourlay, K. Nogita, J. Read, and A.K. Dahle, J. Electron. Mater. 39, 56 (2010).CrossRefGoogle Scholar
  32. 32.
    M. Laentzsch (Paper presented at the 1st Electronic Systemintegration Technology Conference, IEEE, 2006), pp. 383–386.Google Scholar
  33. 33.
    A. Donaldson, R. Aspandiar, and K. Doss (Paper presented at the APEX Conference, April 2008).Google Scholar
  34. 34.
    J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).zbMATHCrossRefGoogle Scholar
  35. 35.
    D. Turnbull, J. Chem. Phys. 18, 198 (1950).CrossRefGoogle Scholar
  36. 36.
    B. Arfaei, M. Benedict, and E.J. Cotts, J. Appl. Phys. 114, 173506 (2013).CrossRefGoogle Scholar
  37. 37.
    Y.C. Huang, S.W. Chen, and K.S. Wu, J. Electron. Mater. 39, 109 (2010).CrossRefGoogle Scholar
  38. 38.
    F. Weinberg and B. Chalmers, Can. J. Phys. 30, 488 (1952).CrossRefGoogle Scholar
  39. 39.
    G.L. Powell, G.A. Colligan, V.A. Surprenant, and A. Urquhart, Metall. Trans. A 8, 971 (1977).CrossRefGoogle Scholar
  40. 40.
    S. O’Hara, J. Cryst. Growth 1, 73 (1967).CrossRefGoogle Scholar
  41. 41.
    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu, Mater. Sci. Eng. A 413, 243 (2005).CrossRefGoogle Scholar
  42. 42.
    M.G. Cho, S.K. Kang, and H.M. Lee, J. Mater. Res. 23, 1147 (2008).CrossRefGoogle Scholar
  43. 43.
    G. Parks, A. Faucett, C. Fox, J. Smith, and E. Cotts, JOM 66, 2311 (2014).CrossRefGoogle Scholar
  44. 44.
    S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).CrossRefGoogle Scholar
  45. 45.
    I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).CrossRefGoogle Scholar
  46. 46.
    W. Kurz and P. Gilgien, Mater. Sci. Eng. A 178, 171 (1994).CrossRefGoogle Scholar
  47. 47.
    S.A. Belyakov and C.M. Gourlay, Mater. Lett. 148, 91 (2015).CrossRefGoogle Scholar
  48. 48.
    S.A. Belyakov and C.M. Gourlay, Intermetallics 25, 48 (2012).CrossRefGoogle Scholar
  49. 49.
    S.A. Belyakov and C.M. Gourlay, Intermetallics 37, 32 (2013).CrossRefGoogle Scholar
  50. 50.
    S.A. Belyakov and C.M. Gourlay, Acta Mater. 71, 56 (2014).CrossRefGoogle Scholar
  51. 51.
    A.J. Page and R.P. Sear, J. Am. Chem. Soc. 131, 17550 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • C. M. Gourlay
    • 1
    Email author
  • S. A. Belyakov
    • 1
  • Z. L. Ma
    • 1
  • J. W. Xian
    • 1
  1. 1.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations