JOM

, Volume 67, Issue 10, pp 2244–2250 | Cite as

Influence of Dilute Hf Additions on Precipitation and Martensitic Transformation in Ni-Ti-Pd Alloys

  • Anne C. Coppa
  • Monica Kapoor
  • B. Chad Hornbuckle
  • Mark L. Weaver
  • Ronald D. Noebe
  • Gregory B. Thompson
Article

Abstract

The effect of Hf (0–1 at.%) additions in a Ni-Ti-Pd alloy on P-phase precipitation and martensitic transformations was studied. The addition of hafnium resulted in the refinement of precipitates with an increase in number density. The overlapping strain fields created due to the decrease in inter-precipitate spacing are suspected to reduce the matrix volume to be less than the critical free volume size needed for the martensitic transformation over the temperature range studied (183–573 K). Hafnium was also found to delay the aging time to achieve peak hardness, suggesting a reduction in growth and coarsening kinetics.

References

  1. 1.
    K. Otsuka and C.M. Wayman, Shape Memory Materials, (Cambridge: Cambridge University Press, 1999).Google Scholar
  2. 2.
    T.W. Duerig, K.N. Melton, D. Stockel, and C.M. Wayman, Engineering Aspects of Shape Memory Alloys (London: Butterworth-Heinemann, 1990).Google Scholar
  3. 3.
    M. Kohl, Shape Memory Microactuators (Berlin: Springer, 2004), pp. 62–95.Google Scholar
  4. 4.
    G.S. Firstov, J.V. Humbeeck, and Y.N. Koval, J. Intell. Mater. Syst. Struct. 17, 1041 (2006).CrossRefGoogle Scholar
  5. 5.
    J.I. Kim and S. Miyazaki, Metall. Mater. Trans. A 36, 3301 (2005).CrossRefGoogle Scholar
  6. 6.
    J.I. Kim and S. Miyazaki, Acta Mater. 53, 4545 (2005).CrossRefGoogle Scholar
  7. 7.
    Z. Yang, W. Tirry, and D. Schryvers, Scr. Mater. 52, 1129 (2005).Google Scholar
  8. 8.
    W. Tirry and D. Schryvers, Acta Mater. 53, 1041 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Nishida, C.M. Wayman, and T. Honma, Metall. Trans. A 17, 1505 (1986).CrossRefGoogle Scholar
  10. 10.
    T. Sasaki, C. Hornbuckle, R.D. Noebe, M. Weaver, and T. Gregory, Metall. Mater. Trans. A 44, 1388 (2012).CrossRefGoogle Scholar
  11. 11.
    G.S. Bigelow, S.A.P. Ii, A. Garg, D. Gaydosh, and R.D. Noebe, Metall. Mater. Trans. A 41, 3065 (2010).CrossRefGoogle Scholar
  12. 12.
    L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills, Acta Mater. 58, 4660 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, and K. Mitose, Mater. Lett. 34, 23 (1998).CrossRefGoogle Scholar
  14. 14.
    F. Yang, L. Kovarik, P.J. Phillips, R.D. Noebe, and M.J. Mills, Scr. Mater. 67, 145 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Zarinejad, Y. Liu, and Y. Tong, Intermetallics 17, 914 (2009).CrossRefGoogle Scholar
  16. 16.
    K. Otsuka and X. Ren, Prog. Mater Sci. 50, 511 (2005).CrossRefGoogle Scholar
  17. 17.
    R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H.E. Karaca, and R.D. Noebe, Acta Mater. 61, 6191 (2013).CrossRefGoogle Scholar
  18. 18.
    H.O. Mosca, G. Bozzolo, and M.F. del Grosso, Phys. B Condens. Matter 407, 3244 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Evirgen, I. Karaman, R.D. Noebe, R. Santamarta, and J. Pons, Scr. Mater. 69, 354 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Shirakawa, Y. Morizono, and M. Nishida, Mater. Sci. Forum 171, 327 (2000).Google Scholar
  21. 21.
    M. Nagasako and M. Nishida, J Phys IV Fr. 112, 1043 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Nagasako, M. Nishida, Y. Murakami, and D. Shindo, Mater. Sci. Eng. A 438–440, 848 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M.J. Mills, and Y. Wang, Acta Mater. 60, 1514 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Ma, I. Karaman, and R.D. Noebe, Int. Mater. Rev. 55, 257 (2010).CrossRefGoogle Scholar
  25. 25.
    R. Noebe, T. Biles, and S.A. Padula II, Advanced Structural Materials: Properties, Design Optimization, and Applications (Boca Raton: CRC Press, 2007).Google Scholar
  26. 26.
    D. Isheim, G. Hsieh, R.D. Noebe, and D.N. Seidman, Solid-Solid Phase Transform. Inorg. Mater. 2, 309 (2005).Google Scholar
  27. 27.
    R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills, Acta Mater. 59, 7325 (2011).CrossRefGoogle Scholar
  28. 28.
    X.L. Meng, W. Cai, Y.F. Zheng, and L.C. Zhao, Mater. Sci. Eng. A 438–440, 666 (2006).CrossRefGoogle Scholar
  29. 29.
    G.S. Bigelow, A. Garg, S.A. Padula II, D.J. Gaydosh, and R.D. Noebe, Scr. Mater. 64, 725 (2011).CrossRefGoogle Scholar
  30. 30.
    O. Benafan, R.D. Noebe, S.A. Padula II, and R. Viadyanathan, Metall. Mater. Trans. A 45, 4539 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, and R. Santamarta, Funct. Mater. Lett. 5, 1250038 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Ashby, Trans. Metall. Soc. AIME 236, 1395 (1966).Google Scholar
  33. 33.
    J.E. Hilliard, Trans. Metall. Soc. AIME 224, 906 (1962).Google Scholar
  34. 34.
    K. Törrönen, Metallography 13, 329 (1980).CrossRefGoogle Scholar
  35. 35.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  36. 36.
    G. Thompson, M. Miller, and H. Fraser, Ultramicroscopy 100, 25 (2004).CrossRefGoogle Scholar
  37. 37.
    B.C. Hornbuckle, M. Kapoor, and G.B. Thompson, Ultramicroscopy (2015). doi:10.1016/j.ultramic.2015.03.003.Google Scholar
  38. 38.
    X.L. Meng, W. Cai, F. Chen, and L.C. Zhao, Scr. Mater. 54, 1599 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Anne C. Coppa
    • 1
  • Monica Kapoor
    • 1
  • B. Chad Hornbuckle
    • 1
  • Mark L. Weaver
    • 1
  • Ronald D. Noebe
    • 2
  • Gregory B. Thompson
    • 1
  1. 1.Department of Metallurgical & Materials EngineeringThe University of AlabamaTuscaloosaUSA
  2. 2.NASA Glenn Research CenterClevelandUSA

Personalised recommendations