Skip to main content
Log in

Polymer Selection Approach for Commonly and Uncommonly Used Natural Fibers Under Uncertainty Environments

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Factors like awareness of the scarcity of non-renewable natural resources, high petroleum prices, and demands for environmental sustainability, as well as reducing the amount of environmental pollution, have led to a renewed interest in natural fiber reinforced polymer composites as a potential bio-based material type. The best polymer matrix type in view of the wide range of conflicting criteria to form a polymeric-based composite material suitable for sustainable industry under an uncertainty environment has still not been sufficiently determined. This work introduces a selection model to evaluate the available polymers for natural fibers to enhance the industrial sustainability theme. The model built was developed to evaluate various polymer types and to determine their relative merits taking account of various conflicting criteria for both commonly used and uncommonly used natural fibers utilizing the analytical hierarchy process technique. It was found that the choice of the best polymer type for a certain fiber type depends strongly on the polymers’ intrinsic desirable conflicting characteristics. Polymers evaluations are illustrated for different technical criteria in order to facilitate the polymer selection process for various industrial applications with high confidence levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Pilla, Handbook of Bioplastics and Biocomposites Engineering Applications (Salem: Scrivener Publishing, 2011).

    Book  Google Scholar 

  2. F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, and A.A. Nuraini, Comput. Electron. Agric. 113, 116–127 (2015).

    Article  Google Scholar 

  3. K. Pickering, Properties and Performance of Natural-Fibre Composites (Boca Raton: Elsevier, 2008).

    Book  Google Scholar 

  4. D.U. Shah, J. Mater. Sci. 48, 6083–6107 (2013).

    Article  Google Scholar 

  5. M.H.P.S. Jawaid and H.P.S. Abdul Khalil, Carbohydr. Polym. 86, 1–18 (2011).

    Article  Google Scholar 

  6. F.M. AL-Oqla, M.S. Sapuan, M.R. Ishak, and N.A. Aziz, BioResources 9, 4608–4621 (2014).

    Article  Google Scholar 

  7. F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, and A.A. Nuraini, J. Compos. Mater. (2015). doi:10.1177/0021998315577233.

    Google Scholar 

  8. F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, and A.A. Nuraini, Int. J. Polym. Anal. Charact. 20, 191–205 (2015).

    Article  Google Scholar 

  9. O. Faruk, A.K. Bledzki, H.-P. Fink, and M. Sain, Macromol. Mater. Eng. 299, 9–26 (2014).

    Article  Google Scholar 

  10. H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui, Compos. B Eng. 40, 655–663 (2009).

    Article  Google Scholar 

  11. P. Brøndsted, H. Lilholt, and A. Lystrup, Annu. Rev. Mater. Res. 35, 505–538 (2005).

    Article  Google Scholar 

  12. F.M. AL-Oqla and S.M. Sapuan, J. Clean. Prod. 66, 347–354 (2014).

    Article  Google Scholar 

  13. F.M. AL-Oqla, S.M. Sapuan, T. Anwer, M. Jawaid, and M.E. Hoque, Synth. Met. 206, 42–54 (2015).

    Article  Google Scholar 

  14. F. Dweiri and F.M. AL-Oqla, Int. J. Comput. Appl. Technol. 26, 182–189 (2006).

    Article  Google Scholar 

  15. F.M. AL-Oqla, O.Y. Alothman, M. Jawaid, S.M. Sapuan, and M.H. Es-Saheb, Biomass Bioenergy (Berlin: Springer, 2014), pp. 1–25.

    Google Scholar 

  16. F.M. AL-Oqla, M.S. Sapuan, M.R. Ishak, and A.A. Nuraini, Fibers Polym. 16, 153–163 (2015).

    Article  Google Scholar 

  17. F.M. AL-Oqla, M.S. Sapuan, M.R. Ishak, and A.A. Nuraini, Am. J. Appl. Sci. 12, 64–71 (2015).

    Article  Google Scholar 

  18. M.I. Al-Widyan and F.M. Al-Oqla, Int. J. Eng. Res. Appl. 1, 1610–1622 (2011).

    Google Scholar 

  19. M.I. Al-Widyan and F.M. Al-Oqla, Build. Simul. 7, 537–545 (2014).

    Article  Google Scholar 

  20. F.M. AL-Oqla and M.T. Hayajneh, Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship, (Amman, 2007).

  21. F.M. AL-Oqla and S.M. Sapuan, Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, (Putrajaya, 2014).

  22. F.M. AL-Oqla, S.M. Sapuan, M.R. Ishak, and A.A. Nuraini, BioResources 10, 299–312 (2014).

    Article  Google Scholar 

  23. Å. Kastensson, J. Clean. Prod. 66, 337–346 (2014).

    Article  Google Scholar 

  24. C. Alves, P.M.C. Ferrão, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues, and D.E. Alves, J. Clean. Prod. 18, 313–327 (2010).

    Article  Google Scholar 

  25. A. Alawar, A.M. Hamed, and K. Al-Kaabi, Compos. B Eng. 40, 601–606 (2009).

    Article  Google Scholar 

  26. A. Arbelaiz, G. Cantero, B. Fernandez, I. Mondragon, P. Ganan, and J.M. Kenny, Polym. Compos. 26, 324–332 (2005).

    Article  Google Scholar 

  27. F.M. AL-Oqla and A.A. Omar, Int. J. Electron. 102, 1044–1055 (2014).

    Article  Google Scholar 

  28. S.M. Sapuan, F. Pua, Y.A. El-Shekeil, and F.M. AL-Oqla, Mater. Des. 50, 467–470 (2013).

    Article  Google Scholar 

  29. A. Hula, K. Jalali, K. Hamza, S.J. Skerlos, and K. Saitou, Environ. Sci. Technol. 37, 5303–5313 (2003).

    Article  Google Scholar 

  30. A.S. Milani, C.K. Eskicioglu, K.B. Robles, K. Bujun, and H. Hosseini-Nasab, eXPRESS Polym. Lett. 5, 1062–1074 (2011).

    Article  Google Scholar 

  31. N.C. Surawski, B. Miljevic, T.A. Bodisco, R.J. Brown, Z.D. Ristovski, and G.A. Ayoko, Environ. Sci. Technol. 47, 1904–1912 (2013).

    Article  Google Scholar 

  32. L. Thomas, Saaty. Eur. J. Oper. Res. 145, 85–91 (2003).

    Article  MATH  Google Scholar 

  33. F.M. Al-Oqla and A.A. Omar, Prog. Electromagn. Res. C 25, 249–269 (2012).

    Article  Google Scholar 

  34. J.K.W. Wong and H. Li, Build. Environ. 43, 108–125 (2008).

    Article  Google Scholar 

  35. R.V. Rao and B.K. Patel, Mater. Des. 31, 4738–4747 (2010).

    Article  Google Scholar 

  36. T.L. Saaty, The Analytic Hierarchy Process (New York: McGrawHill, 1980).

    MATH  Google Scholar 

  37. A. Al-Khanbashi, K. Al-Kaabi, and A. Hammami, Polym. Compos. 26, 486–497 (2005).

    Article  Google Scholar 

  38. BF Abu-Sharkh and Halim Hamid, Polym. Degrad. Stab. 85, 967–973 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris M. AL-Oqla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Oqla, F.M., Sapuan, S.M. Polymer Selection Approach for Commonly and Uncommonly Used Natural Fibers Under Uncertainty Environments. JOM 67, 2450–2463 (2015). https://doi.org/10.1007/s11837-015-1548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1548-8

Keywords

Navigation