Skip to main content
Log in

Interface-Driven Plasticity in Metal–Ceramic Nanolayered Composites: Direct Validation of Multiscale Deformation Modeling via In Situ Indentation in TEM

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We present in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with brittle fracture in the TiN layers. At 5 nm and below, cracking in TiN was suppressed with co-deformation evident in both layers. The in situ transmission electron microscopy (TEM) straining results demonstrate a profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers, as well as direct validation of ex situ and 3-D elastic–plastic deformation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Mater. Today 16, 443 (2013).

    Article  Google Scholar 

  2. W. Han, M.J. Demkowicz, N.A. Mara, E.G. Fu, S. Sinha, A.D. Rollett, Y.Q. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra, Adv. Mater. 25, 6975 (2013).

    Article  Google Scholar 

  3. N. Mara and I.J. Beyerlein, J. Mater. Sci. 49, 6497 (2014).

    Article  Google Scholar 

  4. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 1361021 (2008).

    Article  Google Scholar 

  5. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  6. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, and A. Misra, Appl. Phys. Lett. 97, 021909 (2009).

    Article  Google Scholar 

  7. I. Knorr, N.M. Cordero, E.T. Lilleodden, and C.A. Volkert, Acta Mater. 61, 4984 (2013).

    Article  Google Scholar 

  8. M.A. Monclus, M. Karlik, M. Callisti, E. Frutos, J.L. Lorca, T. Polcar, and J.M. Molina-Aldareguia, Thin Solid Films 571, 275 (2013).

    Article  Google Scholar 

  9. S. Lotfian, M. Rodriguez, K.E. Yazzie, N. Chawla, J. Llorca, and J.M. Molina-Aldareguia, Acta Mater. 61, 4439 (2013).

    Article  Google Scholar 

  10. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  11. A. Misra, X. Zhang, D. Hammon, and R.G. Hoagland, Acta Mater. 53, 221 (2005).

    Article  Google Scholar 

  12. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).

    Article  Google Scholar 

  13. N. Li, J. Wang, A. Misra, and J.Y. Huang, Microsc. Microanal. 18, 1155 (2012).

    Article  Google Scholar 

  14. F. Ebrahimi and D. Kong, Scr. Mater. 40, 609 (1999).

    Article  Google Scholar 

  15. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury, Scr. Mater. 39, 555 (1998).

    Article  Google Scholar 

  16. D. Mitlin, A. Misra, V. Radmilovic, M. Nastasi, R.G. Hoagland, D.J. Embury, J.P. Hirth, and T.E. Mitchell, Philos. Mag. 84, 719 (2004).

    Article  Google Scholar 

  17. M. Ardeljan, M. Knezevic, T. Nicolek, I.J. Beyerlein, S.J. Zheng, J.S. Carpenter, R.J. McCabe, N.A. Mara, T.M. Pollock, and , IOP Conf. Ser. Mater. Sci. Eng. 63, 012170 (2014).

    Article  Google Scholar 

  18. Y. Kim, A.S. Budiman, J.K. Baldwin, N.A. Mara, A. Misra, and S.M. Han, J. Mater. Res. 27, 592 (2012).

    Article  Google Scholar 

  19. E.G. Fu, N. Li, A. Misra, R.G. Hoagland, H. Wang, and X. Zhang, Mater. Sci. Eng. A 493, 283 (2008).

    Article  Google Scholar 

  20. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).

    Article  Google Scholar 

  21. M.J. Demkowicz and L. Thilly, Acta Mater. 59, 7744 (2011).

    Article  Google Scholar 

  22. N. Li, M. Nastasi, and A. Misra, Int. J. Plast. 32, 1 (2012).

    Article  Google Scholar 

  23. S. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara, Sci. Rep. 4, 4226 (2014).

    Google Scholar 

  24. N.A. Mara and I.J. Beyerlein, Curr. Opin. Solid State Mater. Sci. (2015). doi:10.1016/j.cossms.2015.04.002.

    Google Scholar 

  25. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. Wiley series on the science and technology of materials. (New York: Wiley, 1976), p. c1976.

  26. L.E. Toth, Transition Metal Carbides and Nitrides (Waltham: Academic Press, 1971), p. 279.

    Google Scholar 

  27. A.M. Minor, E.A. Morris Jr., J.W. Stach, I. Morris Jr., and I. Petrov, J. Electron. Mater. 32, 1023 (2003).

    Article  Google Scholar 

  28. M. Odén, H. Ljungcrantz, and L. Hultman, J. Mater. Res. 12, 2134 (1997).

    Article  Google Scholar 

  29. J.D. Embury and J.P. Hirth, Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  30. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra, Philos. Mag. 90, 1711 (2010).

    Article  Google Scholar 

  31. N. Li, H. Wang, A. Misra, and J. Wang, Sci. Rep. 4, 6633 (2014).

    Article  Google Scholar 

  32. D. Bhattacharyya, N.A. Mara, R.G. Hoagland, and A. Misra, Scr. Mater. 58, 981 (2008).

    Article  Google Scholar 

  33. A.T. Alpas, J.D. Embury, D.A. Hardwick, and R.W. Springer, J. Mater. Sci. 25, 1603 (1990).

    Article  Google Scholar 

  34. H. Fujita and T. Tabata, Acta Metall. 21, 355 (1973).

    Article  Google Scholar 

  35. M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, and H.L. Fraser, Scr. Mater. 54, 759 (2006).

    Article  Google Scholar 

  36. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra, Acta Mater. 59, 3804 (2011).

    Article  Google Scholar 

  37. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).

    Article  Google Scholar 

  38. J.P. Hirth and J. Lothe, Theory of Dislocations (New York: Krieger, 1982).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mara, N.A., Li, N., Misra, A. et al. Interface-Driven Plasticity in Metal–Ceramic Nanolayered Composites: Direct Validation of Multiscale Deformation Modeling via In Situ Indentation in TEM. JOM 68, 143–150 (2016). https://doi.org/10.1007/s11837-015-1542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1542-1

Keywords

Navigation