Skip to main content
Log in

Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral ‘clusters’ within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Srinivasan and I. Glover, Curr. Sci. 93, 35 (2007).

    Google Scholar 

  2. S.G.K. Pillai, R.M. Pillai, and A.D. Damodaran, JOM 44, 38 (1992).

    Article  Google Scholar 

  3. N.D. Meeks, Archaeometry 28, 133 (1986).

    Article  Google Scholar 

  4. E.A. Lord and S. Ranganathan, J. Non Cryst. Solids, 334 & 335, 121 (2004).

  5. G.M. Ingo, P. Plescia, E. Angelini, C. Riccucci, and T. de Caro, Appl. Phys. A 83, 611 (2006).

    Article  Google Scholar 

  6. W.A. Oddy and M. Bimson, Lead and Tin: Studies in Conservation and Technology, ed. G. Miles and S. Pollard (London: Institute of Conservation, 1985), Occasional paper no 3, pp. 33–39.

  7. S. Srinivasan and I. Glover, IAMS, 20, (London: Institute of Archaeo-Metallurgical Studies, 1998), pp. 15–17.

  8. R. Tylecote, Metallurgy in Archaeology (London: Edward Arnold, 1962).

    Google Scholar 

  9. J. Needham, Science and Civilisation in China, (Cambridge: Cambridge University Press, 1962), vol 4, part 1, p. 91.

  10. S. Srinivasan, MRS Online Proceedings Library, 462 (1996). doi:10.1557/PROC-462-81.

  11. G.V. Raynor, The Cu-Sn Phase Diagram, Vol. 2Annotated Equilibrium Diagram Series, (London: The Institute of Metals, 1944).

    Google Scholar 

  12. N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diagr 11, 278 (1990).

    Article  Google Scholar 

  13. M. Hansen, Constitution of Binary Alloys, 2nd ed. (New York: McGraw Hill Book Co., 1958), pp. 633–638.

  14. S. Fürtauer, D. Li, D. Cupid, and H. Flandor, Intermetallics 34, 142 (2013).

    Article  Google Scholar 

  15. R.W. Cahn, The Coming of Materials Science, (Oxford: Pergamon Press, 2002), p. 79. (Original reference work cited in book is ascribed to Charles Thomas Heycock (1858-1931) and Francis Henry Neville (1847-1915)).

  16. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  Google Scholar 

  17. M.D. Ball and D.J. Lloyd, Scr. Metall. 19, 1065 (1985).

    Article  Google Scholar 

  18. G. Parthasarathy, E. Gopal, H. Krishnamurthy, R. Pandit, and J.A. Sekhar, Curr. Sci. 55, 517 (1986).

    Google Scholar 

  19. J.A. Sekhar, T. Rajasekharan, P.R. Rao, G. Parthasarathy, S. Ramkumar, E.S.R. Gopal, C.S. Lakshmi, and R.M. Mallya, Pramana 27, 267 (1986).

    Article  Google Scholar 

  20. X.Z. Li and J.M. Dubois, J. Phys. 6, 1653 (1994).

    Google Scholar 

  21. V. Elser and C.L. Henley, Phys. Rev. Lett. 55, 2883 (1985).

    Article  Google Scholar 

  22. A.I. Goldman and P.W. Stephens, Phys. Rev. B 37, 2826 (1988).

    Article  Google Scholar 

  23. P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldman, and P.M. Horn, Phys. Rev. Lett. 54, 2422 (1985).

    Article  Google Scholar 

  24. P.A. Bancel, P.A. Heiney, P.W. Stephens, and A.I. Goldman, Nature 319, 104 (1986).

    Article  Google Scholar 

  25. S.B. Bhaduri and J.A. Sekhar, Nature 327, 609 (1987).

    Article  Google Scholar 

  26. E.M. Barber, Aperiodic Structures in Condensed Matter: Fundamentals and Applications, 1st ed. (Boca Raton: CRC Press, 2008).

  27. Z.M. Stadnik, eds., Physical Properties of Quasicrystals, 1st ed. (Berlin: Springer, 1999).

    Google Scholar 

  28. S. Jazbec, The Properties and Applications of QuasicrystalsSeminar II (University of Ljubljana, 2009), http://mafija.fmf.uni-lj.si/seminar/files/2009_2010/Quasicrystals.pdf. Accessed 23 April 2015.

  29. N.D. Nikolić, Z. Rakočević, and K.I. Popov, J. Solid State Electrochem. 8, 526 (2004).

    Article  Google Scholar 

  30. N.D. Nikolić, G. Novaković, Z. Rakočević, D.R. Đurović, and K.I. Popov, Surf. Coat. Technol. 161, 188 (2002).

    Article  Google Scholar 

  31. N.D. Nikolić, Z. Rakočević, and K.I. Popov, J. Electroanal. Chem. 514, 56 (2001).

    Article  Google Scholar 

  32. W. Man, M. Megens, P.J. Steinhardt, and P.M. Chaikin, Nature 436, 993 (2005).

    Article  Google Scholar 

  33. Proceedings of the I.L.L/CODEST WorkshopQuasicrystalline Materials”, ed. C Janot and J.M. Dubois (Singapore: World Scientific, 1988).

  34. P. Ramachandrarao and G.V.S. Sastry, Pramana 25, 225 (1985).

    Article  Google Scholar 

  35. A.M. Mullis, Acta Mater. 47, 1783 (1999).

    Article  Google Scholar 

  36. J.C. Holzer and K.F. Kelton, Crystal-Quasicrystal Transitions, ed. M.J. Yacamán and M. Torres (Amsterdam: Elsevier, 1993), p. 103.

    Google Scholar 

  37. Güven Kurtuldu, Alberto Sicco, and Michel Rappaz, Acta Mater. 70, 240 (2014).

    Article  Google Scholar 

  38. R. Schaefer, L. Bendersky, and F. Biancaniello, J. Phys. Colloq. 47, C3:311 (1986).

    Article  Google Scholar 

  39. R.J. Schaefer, L.A. Bendersky, D. Shechtman, W.J. Boettinger, and F.S. Biancaniello, Metall. Trans. A 17, 2117 (1986).

    Article  Google Scholar 

  40. K.N. Rao and J.A. Sekhar, Scr. Metall. 21, 805 (1987).

    Article  Google Scholar 

  41. Shunroku Watanabe and Tunezo Saito, Trans. Jpn. Inst. Met. 13, 186 (1972).

    Article  Google Scholar 

  42. Akira Yazawa, Kimio Itagaki, and Takeshi Azakami, Trans. Jpn. Inst. Met. 16, 687 (1975).

    Article  Google Scholar 

  43. Y. Kawai, M. Kishimoto, and H. Tsuru, J. Jpn. Inst. Met. 37, 668 (1973).

    Google Scholar 

  44. Przemysław Fima, Appl. Surf. Sci. 257, 468 (2010).

    Article  Google Scholar 

  45. F.R. Berger, S. Lee, J. Johnson, B. Nebgen, and A.C.Y. So, Chemistry 14, 6627 (2008).

    Article  Google Scholar 

  46. R.F. Berger, P.L. Walters, S. Lee, and R. Hoffmann, Chem. Rev. (Washington, DC, U. S.) 111, 4522 (2011).

    Article  Google Scholar 

  47. G.S. Reddy and J.A. Sekhar, Acta Metall. 1989, 1509 (1989).

    Article  Google Scholar 

  48. D.D. Perovic, L. Snugovsky, P. Snugovsky, and J.W. Rutter, Mater. Sci. Technol. 28, 120 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Three of the authors (SY, SS and RB) thank Dr. Amol A. Gokhale, Director, DMRL, for permitting the publication of this article. JS and SM gratefully acknowledge MHI Inc. funding provided by Dr. A. A. Vissa; MHI-03/2009. Appreciation for assistance provided by ARCI Director Dr. G. Sundararajan is expressed by PRR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rama Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, J.A., Mantri, A.S., Yamjala, S. et al. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed . JOM 67, 2976–2983 (2015). https://doi.org/10.1007/s11837-015-1524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1524-3

Keywords

Navigation