, Volume 67, Issue 9, pp 2123–2132 | Cite as

A Preisach-Based Nonequilibrium Methodology for Simulating Performance of Hysteretic Magnetic Refrigeration Cycles

  • Timothy D. Brown
  • Nickolaus M. Bruno
  • Jing-Han Chen
  • Ibrahim Karaman
  • Joseph H. RossJr.
  • Patrick J. Shamberger


In giant magnetocaloric effect (GMCE) materials a large entropy change couples to a magnetostructural first-order phase transition, potentially providing a basis for magnetic refrigeration cycles. However, hysteresis loss greatly reduces the availability of refrigeration work in such cycles. Here, we present a methodology combining a Preisach model for rate-independent hysteresis with a thermodynamic analysis of nonequilibrium phase transformations which, for GMCE materials exhibiting hysteresis, allows an evaluation of refrigeration work and efficiency terms for an arbitrary cycle. Using simplified but physically meaningful descriptors for the magnetic and thermal properties of a Ni45Co5Mn36.6In13.4 at.% single-crystal alloy, we relate these work/efficiency terms to fundamental material properties, demonstrating the method’s use as a materials design tool. Following a simple two-parameter model for the alloy’s hysteresis properties, we compute and interpret the effect of each parameter on the cyclic refrigeration work and efficiency terms. We show that hysteresis loss is a critical concern in cycles based on GMCE systems, since the resultant lost work can reduce the refrigeration work to zero; however, we also find that the lost work may be mitigated by modifying other aspects of the transition, such as the width over which the one-way transformation occurs.


Refrigeration Hysteresis Loss Refrigeration Cycle Magnetic Refrigeration Vapor Compression 


  1. 1.
    V. Pecharsky and K. Gschneidner, Int. J. Refrig. 29, 1239 (2006)Google Scholar
  2. 2.
    E. Bruck and E. Brück, J. Phys. D. Appl. Phys. 38, R381 (2005)Google Scholar
  3. 3.
    S. Russek and C. Zimm, Int. J. Refrig. 29, 1366 (2006)Google Scholar
  4. 4.
    K. Engelbrecht, G. Nellis, and S. Klein, HVACR Res. 12, 1077 (2006)Google Scholar
  5. 5.
    V. Pecharsky, K. Gschneider, A. Pecharsky, A. Tishin, and K. Gschneidner, Phys. Rev. B Condens. Matter Mater. Phys., 64 (2001)Google Scholar
  6. 6.
    A. Smith, R. Bjork, K. Engelbrecht, K. Nielsen, R. Bjørk, and N. Pryds, Adv. Energy Mater. 2, 1288 (2012)Google Scholar
  7. 7.
    H. Ucar, J. Ipus, V. Franco, M.E. McHenry, and D.E. Laughlin, JOM 64, 782 (2012)Google Scholar
  8. 8.
    W. Giauque and D. MacDougall, Phys. Rev. 43, 768 (1933)Google Scholar
  9. 9.
    K.A. Gschneidner and V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000)Google Scholar
  10. 10.
    K. Gschneidner and V. Pecharsky, Mater. Sci. Eng. A 287, 301 (2000)Google Scholar
  11. 11.
    V.K. Pecharsky, Phys. Rev. Lett. 78, 4494 (1997)Google Scholar
  12. 12.
    K.A. Gschneidner, Y. Mudryk, and V.K. Pecharsky, Scr. Mater. 67, 572 (2012)Google Scholar
  13. 13.
    G.V. Brown, J. Appl. Phys. 47, 3673 (1976)Google Scholar
  14. 14.
    C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, and K. Gschneidner, Adv. Cryog. Eng. 43, 1759 (1998)Google Scholar
  15. 15.
    K.A. Gschneidner and V.K. Pecharsky, Int. J. Refrig. 31, 945 (2008)Google Scholar
  16. 16.
    A. Pecharsky, K.A. Gschneidener Jr., and V.K. Pecharsky, J. Appl. Phys. 93, 4722 (2003)Google Scholar
  17. 17.
    F.-X. Hu, B.-G. Shen, J.-R. Sun, Z.-H. Cheng, G.-H. Rao, and X.-X. Zhang, Appl. Phys. Lett. 78, 3675 (2001)Google Scholar
  18. 18.
    S. Fujieda, A. Fujita, and K. Fukamichi, Sci. Technol. Adv. Mater. 4, 339 (2003)Google Scholar
  19. 19.
    B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, and Z.H. Cheng, Adv. Mater. 21, 4545 (2009)Google Scholar
  20. 20.
    D. Thanh, E. Bruck, O. Tegus, J. Klaasse, D.T. Cam-Thanh, E. Brück, and T.J. Gortenmulder, J. Appl. Phys. 99, 08Q107 (2006)Google Scholar
  21. 21.
    W. Dagula, O. Tegus, B. Fuquan, L. Zhang, P.Z. Si, M. Zhang, W.S. Zhang, E. Bruck, and F.R. de Boer, IEEE Trans. Magn. 41, 2778 (2005)Google Scholar
  22. 22.
    H. Yibole, F. Guillou, L. Zhang, N.H. van Dijk, E. Bruck, N.H. van Dijk, and E. Brück, J. Phys. D. Appl. Phys. 47, 075002 (2014)Google Scholar
  23. 23.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006)Google Scholar
  24. 24.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manñosa, and A. Planes, Nat. Mater. 4, 450 (2005)Google Scholar
  25. 25.
    J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Nat. Mater. 11, 620 (2012)Google Scholar
  26. 26.
    P.J. Shamberger and F.S. Ohuchi, Phys. Rev. B Condens. Matter Mater. Phys., 79 (2009)Google Scholar
  27. 27.
    V. Franco, J.S. Blazquez, B. Ingale, A. Conde, and J.S. Blázquez, Annu. Rev. Mater. Res. 42, 305 (2012)Google Scholar
  28. 28.
    J. Lyubina, J. Appl. Phys. 109, 07A902 (2011)Google Scholar
  29. 29.
    Y. Song, X. Chen, V. Dabade, T. Shield, and R. James, Nature 502, 85 (2013)Google Scholar
  30. 30.
    C. Sasso, M. Kuepferling, L. Giudici, V. Basso, and M. Pasquale, J. Appl. Phys. 103, 07B306 (2008)Google Scholar
  31. 31.
    I.D. Mayergoyz, IEEE Trans. Magn. 22, 603 (1986)Google Scholar
  32. 32.
    J. Lyubina, R. Schaefer, N. Martin, L. Schultz, O. Gutfleisch, and R. Schäfer, Adv. Mater. 22, 3735 (2010)Google Scholar
  33. 33.
    J. Lyubina, O. Gutfleisch, M. Richter, and M. Kuzmin, J. Magn. Magn. Mater. 321, 3571 (2009)Google Scholar
  34. 34.
    J.C. Debnath, R. Zeng, J.H. Kim, P. Shamba, and S.X. Dou, Appl. Phys. A. Mater. Sci. Process. 106, 245 (2012)Google Scholar
  35. 35.
    N. Dung, Z. Ou, L. Caron, L. Zhang, G. de Wijs, R. de Groot, and E. Brück, Adv. Energy Mater. 1, 1215 (2011)Google Scholar
  36. 36.
    N.H. Dung, L. Zhang, Z.Q. Ou, E. Bruck, and E. Brück, Appl. Phys. Lett. 99, 092511 (2011)Google Scholar
  37. 37.
    N.T. Trung, Z.Q. Ou, T.J. Gortenmulder, O. Tegus, O. Tegus, and E. Brück, Appl. Phys. Lett. 94, 102513 (2009)Google Scholar
  38. 38.
    J. Cui, Y. Chu, O. Famodu, Y. Furuya, J. Hattrick Simpers, R. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi, Nat. Mater. 5, 286 (2006)Google Scholar
  39. 39.
    J.M. Ball and R.D. James, Arch. Ration. Mech. Anal. 100, 13 (1987)Google Scholar
  40. 40.
    V. Basso, M. Kupferling, C. Sasso, M. LoBue, and M. Kuepferling, IEEE Trans. Magn. 44, 3177 (2008)Google Scholar
  41. 41.
    V. Basso, C. Sasso, G. Bertotti, and M. LoBue, Int. J. Refrig. 29, 1358 (2006)Google Scholar
  42. 42.
    V. Basso, J. Phys. Condens. Matter 23, 226004 (2011)Google Scholar
  43. 43.
    B. Coleman and M. Gurtin, J. Chem. Phys. 47, 597 (1967)Google Scholar
  44. 44.
    V. Basso, G. Bertotti, M. LoBue, C. Sasso, V. Basso, G. Basso, M. Bertotti, and C.P. LoBue, J. Magn. Magn. Mater. 290, 654 (2005)Google Scholar
  45. 45.
    V. Basso, C. Sasso, K. Skokov, O. Gutfleisch, and V. Khovaylo, Phys. Rev. B Condens. Matter Mater. Phys., 85 (2012)Google Scholar
  46. 46.
    F. Preisach, Eur. Phys. J. A 94, 277 (1935)Google Scholar
  47. 47.
    G. Bertotti and V. Basso, J. Appl. Phys. 73, 5827 (1993)Google Scholar
  48. 48.
    V. Basso, C.P. Sasso, and M. LoBue, J. Magn. Magn. Mater. 316, 262 (2007)Google Scholar
  49. 49.
    I.D. Mayergoyz, J. Appl. Phys. 61, 3910 (1987)Google Scholar
  50. 50.
    I.D. Mayergoyz, J. Appl. Phys. 69, 4602 (1991)Google Scholar
  51. 51.
    N.M. Bruno, C. Yegin, I. Karaman, J.-H. Chen, J.H. Ross Jr, J. Liu, and J. Li, Acta Mater. 74, 66 (2005)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Timothy D. Brown
    • 1
  • Nickolaus M. Bruno
    • 2
  • Jing-Han Chen
    • 3
  • Ibrahim Karaman
    • 1
  • Joseph H. RossJr.
    • 3
  • Patrick J. Shamberger
    • 1
  1. 1.Department of Materials Science & EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations