Skip to main content

Applications of Transient Grating Spectroscopy to Radiation Materials Science

Abstract

The ability to study radiation damage in situ will directly enable the rapid innovation and qualification of materials for nuclear applications by allowing direct observation of the effects of radiation damage accumulation. This is a challenging task, as the measurement technique must be noncontact, nondestructive, rapid, and still allow for online irradiation without interference. Applicable methods of mechanical spectroscopy are surveyed, noting their potential usefulness for characterizing radiation-induced microstructural changes in situ. The transient grating (TG) spectroscopy technique appears most suited for these studies, due to its noncontact, nondestructive nature, its ability to rapidly probe materials to the depth of ion irradiation, and the large number of deconvolvable components extractable from its signal. Work is proposed to separate the individual mechanisms of irradiation damage using in situ and ex situ TG spectroscopy, through a suite of single-effect and integrated experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett, Scr. Mater. 88, 33 (2014).

    Article  Google Scholar 

  2. 2.

    G.S. Was, Fundamentals of Radiation Materials Science (Ann Arbor: Springer, 2007).

    Google Scholar 

  3. 3.

    R. Konings, ed. Comprehensive Nuclear Materials, vol. 4. (Elsevier, 2012). ISBN 978-0-08-056027-4.

  4. 4.

    P.M. Rice and S.J. Zinkle, J. Nucl. Mater. 258–263 (2), 1414 (1998).

    Article  Google Scholar 

  5. 5.

    N.I. Budylkin, E.G. Mironova, V.M. Chernov, V.A. Krasnoselov, S.I. Porollo, and F.A. Garner, J. Nucl. Mater. 375, 359 (2008).

    Article  Google Scholar 

  6. 6.

    G.S. Was and R.S. Averback, Comprehensive Nuclear Materials, ed. by R.J.M. Konings (Elsevier, Oxford, 2012), p. 195.

    Chapter  Google Scholar 

  7. 7.

    J.L. Brimhall, L.A. Charlot, and E.P. Simonen, J. Nucl. Mater. 104, 1147 (1981).

    Article  Google Scholar 

  8. 8.

    N. Ghoniem and G.L. Kulcinski, J. Nucl. Mater. 69–70, 816 (1978).

    Article  Google Scholar 

  9. 9.

    A. Hishinuma, N.H. Packan, E.H. Lee, and L.K. Mansur, J. Nucl. Mater. 122 (1–3), 260 (1984).

    Article  Google Scholar 

  10. 10.

    I.A. Portnykh, A.V. Kozlov, V.L. Panchenko, V.M. Chernov, and F.A. Garner, J. Nucl. Mater. B 367–370, 925 (2007).

    Article  Google Scholar 

  11. 11.

    T. Leffers, B.N. Singh, S.N. Buckley, and S.A. Manthorpe, J. Nucl. Mater. 118 (1), 60 (1983).

    Article  Google Scholar 

  12. 12.

    L.K. Mansur, Nucl. Technol. 40 (1), 5 (1978).

    Google Scholar 

  13. 13.

    L.K. Mansur, E.H. Lee, P.J. Maziasz, and A.P. Rowcliffe, J. Nucl. Mater. 141–143 (2), 633 (1986).

    Article  Google Scholar 

  14. 14.

    D.B. Bullen, G.L. Kulcinski, and R.A. Dodd, J. Nucl. Mater. 122–123, 584 (1984).

    Article  Google Scholar 

  15. 15.

    M.P. Short, D. Gaston, C.R. Stanek, and S. Yip, MRS Bull. 39 (1), 71 (2014).

    Article  Google Scholar 

  16. 16.

    P. Bak, C. Tang, and K. Wiesenfeld. Phys. Rev. Lett. 59 (4), 381 (1987).

    MathSciNet  Article  Google Scholar 

  17. 17.

    S. Joneliunas, L. Pranevichius, and R. Valatka, Nucl. Instrum. Methods 182–183 (2), 761 (1981).

    Article  Google Scholar 

  18. 18.

    B.T. Khuri-Yakub, Ultrasonics 31 (5), 361 (1993).

    Article  Google Scholar 

  19. 19.

    L.W. Kessler and D.E. Yuhas, Scanning Electron Microsc. 1, 555 (1978).

    Google Scholar 

  20. 20.

    A.C. Wey, L.W. Kessler, Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti (Springer, Madison, 1990), p. 975.

    Chapter  Google Scholar 

  21. 21.

    J. Zuk, H. Kiefte, and M.J. Clouter, J. Appl. Phys. 73 (10), 4951 (1993).

    Article  Google Scholar 

  22. 22.

    A. Frass and P. Hess, J. Appl. Phys. 90, 5090 (2001).

    Article  Google Scholar 

  23. 23.

    D.C. Hurley, V.K. Tewary, and A.J. Richards, Thin Solid Films 398–399, 326 (2001).

    Article  Google Scholar 

  24. 24.

    A. Ruiz and P.B. Nagy, Ultrasonics 42, 665 (2004).

    Article  Google Scholar 

  25. 25.

    A.G. Every, Measurement Sci. Technol. 13 (5), R21 (2002).

    Article  Google Scholar 

  26. 26.

    D.O. Thompson and D.K. Holmes, J. Appl. Phys. 27 (7), 713 (1956).

    Article  Google Scholar 

  27. 27.

    H.M. Simpson, A. Sosin, and D.F. Johnson, Phys. Rev. B 5, 1393 (1972).

    Article  Google Scholar 

  28. 28.

    B.R. Tittmann, MRS Proc. 503 (1997).

  29. 29.

    H. Ogi and M. Hirao, Res. Nondestr. Eval. 9, 171 (1997).

    Article  Google Scholar 

  30. 30.

    K. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, and H.W. Viehrig, J. Appl. Phys. 111, 054911 (2012).

    Article  Google Scholar 

  31. 31.

    K.H. Matlack, J.-Y. Kim, J.J. Wall, J. Qu, L.J. Jacobs, and M.A. Sokolov, J. Nucl. Mater. 448 (1–3), 26 (2014).

    Article  Google Scholar 

  32. 32.

    Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, Nondestr. Test. Eval. 8–9 (1–6), 1013 (1992).

    Article  Google Scholar 

  33. 33.

    P. Mutti, Z. Sklar, G.A.D. Briggs, and C. Jeynes, J. Appl. Phys. 77 (6), 2388 (1995).

    Article  Google Scholar 

  34. 34.

    P. Hartemann and M. Morizot, 1974 Ultrasonics Symposium, 307 (1974)

  35. 35.

    C. Glorieux, W. Gao, S.E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, J. Appl. Phys. 88 (7), 4394 (2000).

    Article  Google Scholar 

  36. 36.

    J. Goossens, P. Leclaire, X. Xu, C. Glorieux, L. Martinez, A. Sola, C. Siligardi, V. Cannillo, T. Van der Donck, and J.-P. Celis, J. Appl. Phys. 102 (5), 053508 (2007).

    Article  Google Scholar 

  37. 37.

    M. Szabadi, P. Hess, A.J. Kellock, H. Coufal, and J.E.E. Baglin, Phys. Rev. B 58, 8941 (1998).

    Article  Google Scholar 

  38. 38.

    F. Hofmann, M.R. Gilbert, D. Nguyen-Manh, C.E. Beck, A.A. Maznev, J.K. Eliason, W. Liu, D.E.J. Armstrong, K.A. Nelson, and S.L. Dudarev, Acta Mater. 89, 352 (2015).

    Article  Google Scholar 

  39. 39.

    J.A. Johnson, A.A. Maznev, M.T. Bulsara, E.A. Fitzgerald, T.C. Harman, S. Calawa, C.J. Vineis, G. Turner, and K.A. Nelson, J. Appl. Phys. 111, 023503 (2012).

    Article  Google Scholar 

  40. 40.

    J.A. Rogers, A.A. Maznev, M.J. Banet, and K.A. Nelson, Annu. Rev. Mater. Sci. 30 (1), 117 (2000).

    Article  Google Scholar 

  41. 41.

    A.A. Maznev, K.A. Nelson, and J.A. Rogers, Opt. Lett. 23 (16), 1319 (1998).

    Article  Google Scholar 

  42. 42.

    M. Banet, L.P. Allen, K.A. Nelson, M. Fuchs, J.A. Rogers, A. Akthukal, and A. Maznev. SOI Conference, 1998. Proceedings. 1998 IEEE International 45, (1998).

  43. 43.

    N. Igata, Y. Kohno, and J. Nishimura. Dislocation behavior in the swelling process of hvem irradiated stainless steel. In N.H. Packin and A.S. Kumar, eds. Radiation-induced Changes in Microstructure, 13th International Symposium (part I). (ASTM International, 1987), p 241.

  44. 44.

    C. Mion, J.F. Muth, E.A. Preble, and D. Hanser, Appl. Phys. Lett. 89 (9), 092123 (2006).

    Article  Google Scholar 

  45. 45.

    W. Wasserbäch, Phys. Status Solidi 128 (2), 453 (1985).

    Article  Google Scholar 

  46. 46.

    D. Hurley, M. Khafizov, J.R. Kennedy, E. Burgett. Mechanical properties of nuclear fuel surrogates using picosecond laser ultrasonics. Technical Report INL/CON-12-27719 PREPRINT, Idaho National Laboratory (INL), 2013. http://www.inl.gov/technicalpublications/ Documents/5808430.pdf [accessed 26.07.14].

  47. 47.

    I.M. Neklyudov, V.N. Voyevodin, I.N. Laptev, and O.O. Parkhomenko, VANT 90 (2), 21 (2014).

    Google Scholar 

  48. 48.

    A.V. Kozlov, E.N. Shcherbakov, S.A. Averin, and F.A. Garner. The Effect of Void Swelling on Electrical Resistance and Elastic Moduli in Austenitic Steels (ASTM International, 2004. ASTM STP 1447) p 66.

  49. 49.

    R. Logan, A.A. Maznev, K.A. Nelson, and J. Megusar, J. Nucl. Mater. 246 (2–3), 256 (1997).

    Article  Google Scholar 

  50. 50.

    G.J. Dienes, Phys. Rev. 86 (4), 666 (1952).

    Article  Google Scholar 

  51. 51.

    F.R.N. Nabarro, Phys. Rev. 86 (4), 665 (1952).

    Article  Google Scholar 

  52. 52.

    G.J. Ackland, J. Nucl. Mater. 152, 53 (1988).

    Article  Google Scholar 

  53. 53.

    M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Mel'nychenko, and A.S. Kalchenko, J. Nucl. Mater. 453 (1–3), 323 (2014).

    Article  Google Scholar 

  54. 54.

    F.A. Garner. 2010 ANS winter meeting (Las Vegas, November 2010). Tech source science and engineering consultants.

  55. 55.

    A.V. Kozlov and I.A. Portnykh, J. Nucl. Mater. 386–388, 147 (2009).

    Article  Google Scholar 

  56. 56.

    A.S. Kalchenko, V.V. Bryk, N.P. Lazarev, V.N. Voyevodin, and F.A. Garner, J. Nucl. Mater. 437 (1–3), 415 (2013).

    Article  Google Scholar 

  57. 57.

    K. Krishan, Nature 287 (5781), 420 (1980).

    Article  Google Scholar 

  58. 58.

    S. Yip and M.P. Short, Nat. Mater. 12, 774 (2013).

    Article  Google Scholar 

  59. 59.

    M.P. Short and S. Yip, Curr. Opin. Solid State Mater. Sci. (2015). doi:10.1016/j.cossms.2014.12.005.

    Google Scholar 

  60. 60.

    F.A. Garner, G.L. Wire, and E.R. Gilbert, Radiation Effects and Tritium Technology for Fusion Reactors, CONF-750989, (1976), p I-474.

  61. 61.

    W.G. Johnston, J.H. Rosolowski, A.M. Turkalo, and K.D. Challenger, Scr. Mater. 6, 999 (1972).

    Google Scholar 

  62. 62.

    F.A. Garner and D.S. Gelles, J. Nucl. Mater. 159, 286 (1988).

    Article  Google Scholar 

Download references

Acknowledgement

This manuscript is based upon work supported by the NSF Graduate Research Fellowship under Grant No. 1122374, and NSF Grant No. CHE-1111557.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael P. Short.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Short, M.P., Dennett, C.A., Ferry, S.E. et al. Applications of Transient Grating Spectroscopy to Radiation Materials Science. JOM 67, 1840–1848 (2015). https://doi.org/10.1007/s11837-015-1496-3

Download citation

Keywords

  • Radiation Damage
  • Surface Acoustic Wave
  • Duplex Stainless Steel
  • Irradiation Creep
  • Rayleigh Wave Velocity