JOM

, Volume 67, Issue 8, pp 1840–1848 | Cite as

Applications of Transient Grating Spectroscopy to Radiation Materials Science

  • Michael P. Short
  • Cody A. Dennett
  • Sara E. Ferry
  • Yang Yang
  • Vikash K. Mishra
  • Jeffrey K. Eliason
  • Alejandro Vega-Flick
  • Alexei A. Maznev
  • Keith A. Nelson
Article

Abstract

The ability to study radiation damage in situ will directly enable the rapid innovation and qualification of materials for nuclear applications by allowing direct observation of the effects of radiation damage accumulation. This is a challenging task, as the measurement technique must be noncontact, nondestructive, rapid, and still allow for online irradiation without interference. Applicable methods of mechanical spectroscopy are surveyed, noting their potential usefulness for characterizing radiation-induced microstructural changes in situ. The transient grating (TG) spectroscopy technique appears most suited for these studies, due to its noncontact, nondestructive nature, its ability to rapidly probe materials to the depth of ion irradiation, and the large number of deconvolvable components extractable from its signal. Work is proposed to separate the individual mechanisms of irradiation damage using in situ and ex situ TG spectroscopy, through a suite of single-effect and integrated experiments.

References

  1. 1.
    G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett, Scr. Mater. 88, 33 (2014).CrossRefGoogle Scholar
  2. 2.
    G.S. Was, Fundamentals of Radiation Materials Science (Ann Arbor: Springer, 2007).Google Scholar
  3. 3.
    R. Konings, ed. Comprehensive Nuclear Materials, vol. 4. (Elsevier, 2012). ISBN 978-0-08-056027-4.Google Scholar
  4. 4.
    P.M. Rice and S.J. Zinkle, J. Nucl. Mater. 258–263 (2), 1414 (1998).CrossRefGoogle Scholar
  5. 5.
    N.I. Budylkin, E.G. Mironova, V.M. Chernov, V.A. Krasnoselov, S.I. Porollo, and F.A. Garner, J. Nucl. Mater. 375, 359 (2008).CrossRefGoogle Scholar
  6. 6.
    G.S. Was and R.S. Averback, Comprehensive Nuclear Materials, ed. by R.J.M. Konings (Elsevier, Oxford, 2012), p. 195.CrossRefGoogle Scholar
  7. 7.
    J.L. Brimhall, L.A. Charlot, and E.P. Simonen, J. Nucl. Mater. 104, 1147 (1981).CrossRefGoogle Scholar
  8. 8.
    N. Ghoniem and G.L. Kulcinski, J. Nucl. Mater. 69–70, 816 (1978).CrossRefGoogle Scholar
  9. 9.
    A. Hishinuma, N.H. Packan, E.H. Lee, and L.K. Mansur, J. Nucl. Mater. 122 (1–3), 260 (1984).CrossRefGoogle Scholar
  10. 10.
    I.A. Portnykh, A.V. Kozlov, V.L. Panchenko, V.M. Chernov, and F.A. Garner, J. Nucl. Mater. B 367–370, 925 (2007).CrossRefGoogle Scholar
  11. 11.
    T. Leffers, B.N. Singh, S.N. Buckley, and S.A. Manthorpe, J. Nucl. Mater. 118 (1), 60 (1983).CrossRefGoogle Scholar
  12. 12.
    L.K. Mansur, Nucl. Technol. 40 (1), 5 (1978).Google Scholar
  13. 13.
    L.K. Mansur, E.H. Lee, P.J. Maziasz, and A.P. Rowcliffe, J. Nucl. Mater. 141–143 (2), 633 (1986).CrossRefGoogle Scholar
  14. 14.
    D.B. Bullen, G.L. Kulcinski, and R.A. Dodd, J. Nucl. Mater. 122–123, 584 (1984).CrossRefGoogle Scholar
  15. 15.
    M.P. Short, D. Gaston, C.R. Stanek, and S. Yip, MRS Bull. 39 (1), 71 (2014).CrossRefGoogle Scholar
  16. 16.
    P. Bak, C. Tang, and K. Wiesenfeld. Phys. Rev. Lett. 59 (4), 381 (1987).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Joneliunas, L. Pranevichius, and R. Valatka, Nucl. Instrum. Methods 182–183 (2), 761 (1981).CrossRefGoogle Scholar
  18. 18.
    B.T. Khuri-Yakub, Ultrasonics 31 (5), 361 (1993).CrossRefGoogle Scholar
  19. 19.
    L.W. Kessler and D.E. Yuhas, Scanning Electron Microsc. 1, 555 (1978).Google Scholar
  20. 20.
    A.C. Wey, L.W. Kessler, Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti (Springer, Madison, 1990), p. 975.CrossRefGoogle Scholar
  21. 21.
    J. Zuk, H. Kiefte, and M.J. Clouter, J. Appl. Phys. 73 (10), 4951 (1993).CrossRefGoogle Scholar
  22. 22.
    A. Frass and P. Hess, J. Appl. Phys. 90, 5090 (2001).CrossRefGoogle Scholar
  23. 23.
    D.C. Hurley, V.K. Tewary, and A.J. Richards, Thin Solid Films 398–399, 326 (2001).CrossRefGoogle Scholar
  24. 24.
    A. Ruiz and P.B. Nagy, Ultrasonics 42, 665 (2004).CrossRefGoogle Scholar
  25. 25.
    A.G. Every, Measurement Sci. Technol. 13 (5), R21 (2002).CrossRefGoogle Scholar
  26. 26.
    D.O. Thompson and D.K. Holmes, J. Appl. Phys. 27 (7), 713 (1956).CrossRefGoogle Scholar
  27. 27.
    H.M. Simpson, A. Sosin, and D.F. Johnson, Phys. Rev. B 5, 1393 (1972).CrossRefGoogle Scholar
  28. 28.
    B.R. Tittmann, MRS Proc. 503 (1997).Google Scholar
  29. 29.
    H. Ogi and M. Hirao, Res. Nondestr. Eval. 9, 171 (1997).CrossRefGoogle Scholar
  30. 30.
    K. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, and H.W. Viehrig, J. Appl. Phys. 111, 054911 (2012).CrossRefGoogle Scholar
  31. 31.
    K.H. Matlack, J.-Y. Kim, J.J. Wall, J. Qu, L.J. Jacobs, and M.A. Sokolov, J. Nucl. Mater. 448 (1–3), 26 (2014).CrossRefGoogle Scholar
  32. 32.
    Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, Nondestr. Test. Eval. 8–9 (1–6), 1013 (1992).CrossRefGoogle Scholar
  33. 33.
    P. Mutti, Z. Sklar, G.A.D. Briggs, and C. Jeynes, J. Appl. Phys. 77 (6), 2388 (1995).CrossRefGoogle Scholar
  34. 34.
    P. Hartemann and M. Morizot, 1974 Ultrasonics Symposium, 307 (1974)Google Scholar
  35. 35.
    C. Glorieux, W. Gao, S.E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, J. Appl. Phys. 88 (7), 4394 (2000).CrossRefGoogle Scholar
  36. 36.
    J. Goossens, P. Leclaire, X. Xu, C. Glorieux, L. Martinez, A. Sola, C. Siligardi, V. Cannillo, T. Van der Donck, and J.-P. Celis, J. Appl. Phys. 102 (5), 053508 (2007).CrossRefGoogle Scholar
  37. 37.
    M. Szabadi, P. Hess, A.J. Kellock, H. Coufal, and J.E.E. Baglin, Phys. Rev. B 58, 8941 (1998).CrossRefGoogle Scholar
  38. 38.
    F. Hofmann, M.R. Gilbert, D. Nguyen-Manh, C.E. Beck, A.A. Maznev, J.K. Eliason, W. Liu, D.E.J. Armstrong, K.A. Nelson, and S.L. Dudarev, Acta Mater. 89, 352 (2015).CrossRefGoogle Scholar
  39. 39.
    J.A. Johnson, A.A. Maznev, M.T. Bulsara, E.A. Fitzgerald, T.C. Harman, S. Calawa, C.J. Vineis, G. Turner, and K.A. Nelson, J. Appl. Phys. 111, 023503 (2012).CrossRefGoogle Scholar
  40. 40.
    J.A. Rogers, A.A. Maznev, M.J. Banet, and K.A. Nelson, Annu. Rev. Mater. Sci. 30 (1), 117 (2000).CrossRefGoogle Scholar
  41. 41.
    A.A. Maznev, K.A. Nelson, and J.A. Rogers, Opt. Lett. 23 (16), 1319 (1998).CrossRefGoogle Scholar
  42. 42.
    M. Banet, L.P. Allen, K.A. Nelson, M. Fuchs, J.A. Rogers, A. Akthukal, and A. Maznev. SOI Conference, 1998. Proceedings. 1998 IEEE International 45, (1998).Google Scholar
  43. 43.
    N. Igata, Y. Kohno, and J. Nishimura. Dislocation behavior in the swelling process of hvem irradiated stainless steel. In N.H. Packin and A.S. Kumar, eds. Radiation-induced Changes in Microstructure, 13th International Symposium (part I). (ASTM International, 1987), p 241.Google Scholar
  44. 44.
    C. Mion, J.F. Muth, E.A. Preble, and D. Hanser, Appl. Phys. Lett. 89 (9), 092123 (2006).CrossRefGoogle Scholar
  45. 45.
    W. Wasserbäch, Phys. Status Solidi 128 (2), 453 (1985).CrossRefGoogle Scholar
  46. 46.
    D. Hurley, M. Khafizov, J.R. Kennedy, E. Burgett. Mechanical properties of nuclear fuel surrogates using picosecond laser ultrasonics. Technical Report INL/CON-12-27719 PREPRINT, Idaho National Laboratory (INL), 2013. http://www.inl.gov/technicalpublications/ Documents/5808430.pdf [accessed 26.07.14].
  47. 47.
    I.M. Neklyudov, V.N. Voyevodin, I.N. Laptev, and O.O. Parkhomenko, VANT 90 (2), 21 (2014).Google Scholar
  48. 48.
    A.V. Kozlov, E.N. Shcherbakov, S.A. Averin, and F.A. Garner. The Effect of Void Swelling on Electrical Resistance and Elastic Moduli in Austenitic Steels (ASTM International, 2004. ASTM STP 1447) p 66.Google Scholar
  49. 49.
    R. Logan, A.A. Maznev, K.A. Nelson, and J. Megusar, J. Nucl. Mater. 246 (2–3), 256 (1997).CrossRefGoogle Scholar
  50. 50.
    G.J. Dienes, Phys. Rev. 86 (4), 666 (1952).CrossRefGoogle Scholar
  51. 51.
    F.R.N. Nabarro, Phys. Rev. 86 (4), 665 (1952).CrossRefGoogle Scholar
  52. 52.
    G.J. Ackland, J. Nucl. Mater. 152, 53 (1988).CrossRefGoogle Scholar
  53. 53.
    M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Mel'nychenko, and A.S. Kalchenko, J. Nucl. Mater. 453 (1–3), 323 (2014).CrossRefGoogle Scholar
  54. 54.
    F.A. Garner. 2010 ANS winter meeting (Las Vegas, November 2010). Tech source science and engineering consultants.Google Scholar
  55. 55.
    A.V. Kozlov and I.A. Portnykh, J. Nucl. Mater. 386–388, 147 (2009).CrossRefGoogle Scholar
  56. 56.
    A.S. Kalchenko, V.V. Bryk, N.P. Lazarev, V.N. Voyevodin, and F.A. Garner, J. Nucl. Mater. 437 (1–3), 415 (2013).CrossRefGoogle Scholar
  57. 57.
    K. Krishan, Nature 287 (5781), 420 (1980).CrossRefGoogle Scholar
  58. 58.
    S. Yip and M.P. Short, Nat. Mater. 12, 774 (2013).CrossRefGoogle Scholar
  59. 59.
    M.P. Short and S. Yip, Curr. Opin. Solid State Mater. Sci. (2015). doi:10.1016/j.cossms.2014.12.005.Google Scholar
  60. 60.
    F.A. Garner, G.L. Wire, and E.R. Gilbert, Radiation Effects and Tritium Technology for Fusion Reactors, CONF-750989, (1976), p I-474.Google Scholar
  61. 61.
    W.G. Johnston, J.H. Rosolowski, A.M. Turkalo, and K.D. Challenger, Scr. Mater. 6, 999 (1972).Google Scholar
  62. 62.
    F.A. Garner and D.S. Gelles, J. Nucl. Mater. 159, 286 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Michael P. Short
    • 1
  • Cody A. Dennett
    • 1
  • Sara E. Ferry
    • 1
  • Yang Yang
    • 1
  • Vikash K. Mishra
    • 2
  • Jeffrey K. Eliason
    • 3
  • Alejandro Vega-Flick
    • 3
  • Alexei A. Maznev
    • 3
  • Keith A. Nelson
    • 3
  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations