Skip to main content
Log in

Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order–disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.H. Huang, A Study on the Multicomponent Alloy Systems Containing Equal-Mole Elements (Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 1996).

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  3. H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Mater. Sci. Eng. B 163, 184 (2009).

    Article  Google Scholar 

  4. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, J. Alloys Compd. 488, 57 (2009).

    Article  Google Scholar 

  5. C. Lin, and H. Tsai, Intermetallics 19, 288 (2011).

    Article  Google Scholar 

  6. S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards, J. Alloys Compd. 599, 179 (2014).

    Article  Google Scholar 

  7. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Wear 261, 513 (2006).

    Article  Google Scholar 

  8. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  9. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  10. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  11. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Webber, J.C. Neuefiend, Z. Tang, and P.K. Liaw, Nat. Commun. 6, 5964 (2015).

    Article  Google Scholar 

  12. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839–845 (2012).

    Article  Google Scholar 

  13. M.G. Poletti, and L. Battezzati, Acta Mater. 75, 297–306 (2014).

    Article  Google Scholar 

  14. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Mater. Sci. 61, 1–93 (2014).

    Google Scholar 

  15. F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, and L. Vitos, Phys. Rev. B 88, 085128 (2013).

    Article  Google Scholar 

  16. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  17. A.K. Singh, and A. Subramaniam, J. Alloys Compd. 587, 113–119 (2014).

    Article  Google Scholar 

  18. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, JOM 65, 1780 (2013).

    Article  Google Scholar 

  19. R.E. Voskoboinikov, G.R. Lumpkin, and S.C. Middleburgh, Intermetallics 32, 23 (2013).

    Article  Google Scholar 

  20. P. Ramdohr, Fortschritte der Mineralogie 28, 69 (1949).

    Google Scholar 

  21. G. Kresse, and J. Hafner, Phys. Rev. B 49, 4251 (1994).

    Article  Google Scholar 

  22. C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt III, J.M. LeBeau, et al, Appl. Phys. Lett. 106, 161906 (2015).

    Article  Google Scholar 

  23. R. Swalin, Thermodynamics of Solids (Wiley, New York, 1991), p. 21.

    Google Scholar 

  24. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).

    MATH  Google Scholar 

  25. D.J.M. King, S.C. Middleburgh, A.C.Y. Liu, H.A. Tahini, G.R. Lumpkin, and M.B. Cortie, Acta Mater. 83, 269 (2015).

    Article  Google Scholar 

  26. L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).

    Article  Google Scholar 

  27. S.C. Middleburgh, K.P.D. Lagerlof, and R.W. Grimes, J. Am. Ceram. Soc. 96, 308–311 (2013).

    Article  Google Scholar 

  28. W.R. Wang, W.L. Wang, and J.W. Yeh, J. Alloys Compd. 589, 143 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

This research was undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (https://www.massive.org.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Middleburgh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, D.M., Middleburgh, S.C., Edwards, L. et al. Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys. JOM 67, 2375–2380 (2015). https://doi.org/10.1007/s11837-015-1495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1495-4

Keywords

Navigation