Skip to main content
Log in

New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

  • Published:
JOM Aims and scope Submit manuscript

Abstract

New bismuth-substituted hydroxyapatite [Ca10−x Bi x (PO4)6(OH)2 where x = 0–2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12–25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.C.M. Driessens and B. Soc, Chim. Belg. 89, 663 (1997).

    Article  Google Scholar 

  2. M.T. Bernards, C. Qin, and S. Jiang, Colloid Surf. B 64, 236 (2008).

    Article  Google Scholar 

  3. R.Z. LeGeros, Clin. Orthop. Relat. R 395, 81 (2002).

    Article  Google Scholar 

  4. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier Press, 1994), p. 111.

    Google Scholar 

  5. T. Tamm and M. Peld, J. Solid State Chem. 179, 1581 (2006).

    Article  Google Scholar 

  6. J. Shepherd, D. Shepherd, and S. Best, J. Mater. Sci. 23, 2335 (2012).

    Google Scholar 

  7. S.Y. Lee, J.H. Kwak, M.S. Kim, S.W. Nam, T.H. Lim, S.A. Hong, and K.J. Yoon, Korean J. Chem. Eng. 24, 226 (2007).

    Article  Google Scholar 

  8. K. Zhu, K. Yanagisawa, R. Shimanouchi, A. Onda, and K. Kajiyoshi, J. Eur. Ceram. Soc. 26, 509 (2006).

    Article  Google Scholar 

  9. S.H. Lee and K.J. Yoon, Korean J. Chem. Eng. 18, 228 (2001).

    Article  Google Scholar 

  10. I.R. de Lima, G.G. Alves, C.A. Soriano, A.P. Campaneli, T.H. Gasparoto, E.S. Ramos, L.A. de Sena, A.M. Rossi, and J.M. Granjeiro, J. Biomed. Mater. Res. A 98A, 351 (2011).

    Article  Google Scholar 

  11. T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.Q. Chen, and F.Z. Cui, J. Mater. Sci. 9, 129 (1998).

    Google Scholar 

  12. B.J. Marshall, Am. J. Gastroenterol. 86, 16 (1991).

    Google Scholar 

  13. N. Yang and H. Sun, Coord. Chem. Rev. 251, 2354 (2007).

    Article  Google Scholar 

  14. M. Stoltenberg, S. Juhl, and G. Danscher, Eur. J. Histochem. 51, 53 (2007).

    Google Scholar 

  15. L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, and M. Mehring, Eur. J. Inorg. Chem. 30, 4763 (2010).

    Article  Google Scholar 

  16. F. Chen, C. Liu, and Y. Mao, Acta Biomater. 6, 3199 (2010).

    Article  Google Scholar 

  17. A.W. Bauer, W.M. Kirby, J.C. Sherris, and M. Truck, Am. J. Clin. Pathol. 45, 493 (1966).

    Google Scholar 

  18. T. Suzuki, T. Hatsushika, and M. Miyake, J. Chem. Soc. Farad. T. 1, 3605 (1982).

    Article  Google Scholar 

  19. H. Kim, R.P. Camata, Y.K. Vohra, and W.R. Lacefield, J. Mater. Sci. Mater. Med. 16, 961 (2005).

    Article  Google Scholar 

  20. D.G. Guo, A.H. Wang, Y. Han, and K.W. Xu, Acta Biomater. 5, 3512 (2009).

    Article  Google Scholar 

  21. E.I. Getman, A.V. Ignatov, S.N. Loboda, M.A.B.A. Jabar, A.O. Zhegailo, and A.S. Gluhova, Funct. Mater. 18, 293 (2011).

    Google Scholar 

  22. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  23. A. Baumer, R. Caruba, H. Bizouard, and A. Peckett, Can. Mineral. 21, 567 (1983).

    Google Scholar 

  24. D. Bernache-Assollant, A. Ababou, E. Champion, and M. Heughebaert, J. Eur. Ceram. Soc. 23, 229 (2003).

    Article  Google Scholar 

  25. R.J. Chung, M.F. Hsieh, R.N. Panda, and T.S. Chin, Surf. Coat. Tech. 165, 194 (2003).

    Article  Google Scholar 

  26. M. Pourbaghi-Masouleh and H. Asgharzadeh, Mater. Sci.—Pol. 31, 424 (2013).

    Article  Google Scholar 

  27. A. Serret, M.V. Cabanas, and M. Vallet-Regi, Chem. Mater. 12, 3836 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ciobanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciobanu, G., Bargan, A.M. & Luca, C. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering. JOM 67, 2534–2542 (2015). https://doi.org/10.1007/s11837-015-1467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1467-8

Keywords

Navigation