JOM

, Volume 67, Issue 8, pp 1856–1863 | Cite as

The Use of Ultrasound to Measure Dislocation Density

  • Felipe Barra
  • Rodrigo Espinoza-González
  • Henry Fernández
  • Fernando Lund
  • Agnès Maurel
  • Vincent Pagneux
Article

Abstract

Dislocations are at the heart of the plastic behavior of materials yet they are very difficult to probe experimentally. Lack of a practical nonintrusive measuring tool for, say, dislocation density, seriously hampers modeling efforts, as there is little guidance from data in the form of quantitative measurements, as opposed to visualizations. Dislocation density can be measured using transmission electron microscopy (TEM) and x-ray diffraction (XRD). TEM can directly show the strain field around dislocations, which allows for the counting of the number of dislocations in a micrograph. This procedure is very laborious and local, since samples have to be very small and thin, and is difficult to apply when dislocation densities are high. XRD relies on the broadening of diffraction peaks induced by the loss of crystalline order induced by the dislocations. This broadening can be very small, and finding the dislocation density involves unknown parameters that have to be fitted with the data. Both methods, but especially TEM, are intrusive, in the sense that samples must be especially treated, mechanically and chemically. A nonintrusive method to measure dislocation density would be desirable. This paper reviews recent developments in the theoretical treatment of the interaction of an elastic wave with dislocations that have led to formulae that relate dislocation density to quantities that can be measured with samples of cm size. Experimental results that use resonant ultrasound spectroscopy supporting this assertion are reported, and the outlook for the development of a practical, nonintrusive, method to measure dislocation density is discussed.

References

  1. 1.
    D. Hull and D. J. Bacon, Introduction to Dislocations, 5th edition (Elsevier, 2011).Google Scholar
  2. 2.
    G. Xu, Dislocations in Solids, eds. F.R.N. Nabarro and J.P. Hirth, vol. 12 (Elsevier, 2004).Google Scholar
  3. 3.
    U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts (Wiley, 2007)Google Scholar
  4. 4.
    G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007).Google Scholar
  5. 5.
    S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
  6. 6.
    S.J. Zinkle and Y. Matsukawa, J. Nucl. Mater. 329–333, 88 (2004).CrossRefGoogle Scholar
  7. 7.
    H. Wang, D.S. Xu, and R. Yang, Model. Simul. Mater. Sci Eng. 22, 085004 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, and L.F. Menezes, Mech. Res. Commun. 48, 1 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Yilmaz, Sci. Technol. Adv. Mater. 12, 063001 (16pp) (2011).Google Scholar
  10. 10.
    A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov, J. Mech. Phys. Solids 52, 1213 (2004).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner, Int. J. Plasticity 26, 925 (2010).CrossRefMATHGoogle Scholar
  12. 12.
    H.S. Leung, P.S.S. Leung, B. Cheng, and A.H.W. Ngan, Int. J. Plasticity 67, 1 (2015).CrossRefGoogle Scholar
  13. 13.
    D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2nd Ed. (Springer, Berlin, 2009), Ch. 27.Google Scholar
  14. 14.
    F.A. Ponce, R. Sinclair, and R.H. Rube, Appl. Phys. Lett. 39, 951 (1981).CrossRefGoogle Scholar
  15. 15.
    F.A. Ponce, T. Yamashita, and S. Hahn, Appl. Phys. Lett. 43, 1051 (1983).CrossRefGoogle Scholar
  16. 16.
    P.E. Batson, N. Dellby, and O.L. Krivanek, Nature 418, 617 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Yamada and T. Sakai, Microscopy 63, 449 (2014).CrossRefGoogle Scholar
  18. 18.
    N. Li, J. Wang, X. Zhang, and A. Misra, J. Miner. Met. Mater. Soc. 63, 62 (2011).Google Scholar
  19. 19.
    R.K. Ham, Philos. Mag. 6, 1183 (1961).CrossRefGoogle Scholar
  20. 20.
    B. D. Cullity, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, 2001).Google Scholar
  21. 21.
    T. Ungár, Appl. Phys. Lett. 69, 3173 (1996).CrossRefGoogle Scholar
  22. 22.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  23. 23.
    T. Ungár and A. Borbély, Appl. Phys. Lett. 69, 3173 (1996).CrossRefGoogle Scholar
  24. 24.
    T. Ungár, I. Dragomir, Â. Révész, and A. Borbély, J. Appl. Cryst. 32, 992 (1999).CrossRefGoogle Scholar
  25. 25.
    T. Ungár and G. Tichy, Phys. Stat. Sol. A 171, 425 (1999).CrossRefGoogle Scholar
  26. 26.
    M. R. Movaghar Garabagh, S. Hossein Nedjad, H. Shirazi, M. Iranpour Mobarekeh, and M. Nili Ahmadabadi, Thin Solid Films 516, 8117 (2008).Google Scholar
  27. 27.
    T. Ungár, Mater. Sci. Eng. A 309–310, 14 (2001).CrossRefGoogle Scholar
  28. 28.
    F.R.N. Nabarro, Proc. R. Soc. Lond. Ser. A 209, 278 (1951).MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.D. Eshelby, Proc. R. Soc. London, Ser. A 197, 396 (1949).CrossRefGoogle Scholar
  30. 30.
    J.D. Eshelby, Phys. Rev. 90, 248 (1953)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    T. Mura, Philos. Mag. 8, 843 (1963).CrossRefGoogle Scholar
  32. 32.
    F. Lund, J. Mater. Res. 3, 280 (1988).CrossRefMATHGoogle Scholar
  33. 33.
    A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).CrossRefMATHGoogle Scholar
  34. 34.
    A. Granato and K. Lücke, J. Appl. Phys. 27, 789 (1956).CrossRefGoogle Scholar
  35. 35.
    G.A. Kneezel and A.V. Granato, Phys. Rev. B 25, 2851 (1982).CrossRefGoogle Scholar
  36. 36.
    A. Maurel, J.-F. Mercier, and F. Lund, J. Acoust. Soc. Am. 115, 2773 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Maurel, J.-F. Mercier, and F. Lund, Phys. Rev. B 70, 024303 (2004).CrossRefGoogle Scholar
  38. 38.
    A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Mater. Sci. Eng. A 400–401, 222 (2005).CrossRefGoogle Scholar
  39. 39.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174110 (2005).CrossRefGoogle Scholar
  40. 40.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 72, 174111 (2005).CrossRefGoogle Scholar
  41. 41.
    A. Maurel, V. Pagneux, D. Boyer, and F. Lund, Proc. R. Soc. Lond. A 462, 2607 (2006).MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Acoust. Soc. Am. 121, 3418 (2007).CrossRefGoogle Scholar
  43. 43.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 75, 224112 (2007).CrossRefGoogle Scholar
  44. 44.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Int. J. Bifurc. Chaos 19, 2765 (2009).CrossRefGoogle Scholar
  45. 45.
    N. Rodríguez, A. Maurel, V. Pagneux, F. Barra, and F. Lund, J. Appl. Phys. 106, 054910 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Phys. Rev. B 80, 136102 (2009).CrossRefGoogle Scholar
  47. 47.
    A. Maurel, V. Pagneux, F. Barra, and F. Lund, Ultrasonics 50, 161 (2010).CrossRefMATHGoogle Scholar
  48. 48.
    H.M. Ledbetter and C. Fortunko, J. Mater. Res. 10, 1352 (1995).CrossRefGoogle Scholar
  49. 49.
    H. Ogi, H.M. Ledbetter, S. Kim, and M. Hirao, J. Acoust. Soc. Am. 106, 660 (1999).CrossRefMATHGoogle Scholar
  50. 50.
    H. Ogi, N. Nakamura, M. Hirao, and H. Ledbetter, Ultrasonics 42, 183 (2004).CrossRefMATHGoogle Scholar
  51. 51.
    N. Mujica, M.T. Cerda, R. Espinoza, J. Lisoni, and F. Lund, Acta Mater. 60, 5828 (2012).CrossRefGoogle Scholar
  52. 52.
    A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997).Google Scholar
  53. 53.
    L. D. Landau and I. M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1970).Google Scholar
  54. 54.
    R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley, New York, 2009).Google Scholar
  55. 55.
    C. Espinoza, Magister thesis (U. de Chile, 2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Felipe Barra
    • 1
  • Rodrigo Espinoza-González
    • 2
  • Henry Fernández
    • 1
  • Fernando Lund
    • 1
  • Agnès Maurel
    • 3
  • Vincent Pagneux
    • 4
  1. 1.Departamento de Física and CIMAT, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  3. 3.Institut LangevinESPCIParisFrance
  4. 4.LAUMUMR CNRS 6613Le Mans Cedex 9France

Personalised recommendations