Combination of Different In Situ Characterization Techniques and Scanning Electron Microscopy Investigations for a Comprehensive Description of the Tensile Deformation Behavior of a CrMnNi TRIP/TWIP Steel

Abstract

The class of low-carbon, high-alloy CrMnNi steels exhibits outstanding mechanical properties with respect to high strength and ductility due to either transformation-induced plasticity (TRIP) or twinning-induced plasticity (TWIP) effect depending on chemical composition and deformation temperature. However, the ongoing deformation mechanisms like the formation of stacking faults, martensitic phase transformation or deformation-induced twinning are overlapping and the kinetics of the microstructure evolution are quite complex. Therefore, in addition to macroscopic deformation tests and microstructural investigations by scanning electron microscopy, a combination of several in situ characterization techniques with either high lateral and/or temporal resolution as well as providing integral volume information were chosen in order to give a thoroughly and comprehensive description of the deformation behavior of CrMnNi TRIP/TWIP steels. In addition, the complementary in situ techniques like in situ nanoindentation, micro-digital image correlation, and acoustic emission measurements provide excellent possibility for description of materials behavior on a multiscale level from the submicrometer scale up to the macroscopic range. The results obtained by the complementary techniques can support the future modeling of the deformation behavior of TRIP/TWIP steels dependent on chemical composition, temperature, grain size and grain orientation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park, Met. Mater. Trans. A 33, 1689 (2002).

    Google Scholar 

  2. 2.

    M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010).

    Google Scholar 

  3. 3.

    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Acta Mater. 51, 2611 (2003).

    Google Scholar 

  4. 4.

    B.C. De Cooman, Curr. Opin. Sol. State Mater. Sci. 8, 285 (2004).

    Google Scholar 

  5. 5.

    J.H. Shin, J.S. Jeong, and J.W. Lee, Mater. Charac. 99, 230 (2015).

    Google Scholar 

  6. 6.

    O. Grässel, L. Krüger, G. Formmeyer, and L.W. Meyer, Int. J. Plast 16, 1391 (2000).

    Google Scholar 

  7. 7.

    G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Inter. 43, 438 (2003).

    Google Scholar 

  8. 8.

    C. Herrera, D. Ponge, and D. Raabe, Acta Mater. 59, 4653 (2011).

    Google Scholar 

  9. 9.

    G.B. Olson and M. Cohen, Met. Mat. Trans. A 6, 791 (1975).

    Google Scholar 

  10. 10.

    G.B. Olson, Transformation plasticity and stability of plastic flow, in Deformation, Processing and Structure, ed. by G. Krauss (Metals park, OH: ASM, 1984), pp. 391–424.

  11. 11.

    V.I. Levistas, A.V. Idesman, and G.B. Olson, Acta Mater. 47, 219 (1999).

    Google Scholar 

  12. 12.

    B.C. de Cooman, O. Kwon, and K.G. Chin, Mater. Sci. Technol. 28, 513 (2012).

    Google Scholar 

  13. 13.

    O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Google Scholar 

  14. 14.

    K. Renard, S. Ryelandt, and P.J. Jacques, Mater. Sci. Eng. A 527, 2969 (2010).

    Google Scholar 

  15. 15.

    A. Weiß, H. Gutte, M. Radke, and P.R. Scheller, patent specification WO 0020 08009722A1.

  16. 16.

    A. Jahn, A. Kovalev, A. Weiss, S. Wolf, L. Krüger, and P.R. Scheller, Steel Res. Int. 82, 39 (2011).

    Google Scholar 

  17. 17.

    A. Glage, A. Weidner, and H. Biermann, Steel Res. Int. 82, 1040 (2011).

    Google Scholar 

  18. 18.

    S. Ackermann, D. Kulawinski, S. Henkel, and H. Biermann, Int. J. Fatig. 67, 123 (2014).

    Google Scholar 

  19. 19.

    D. Ehinger, L. Krüger, U. Martin, C. Weigelt, and C.G. Aneziris, Steel Res. Int. 82, 1048 (2011).

    Google Scholar 

  20. 20.

    S. Ackermann, S. Martin, M.R. Schwarz, C. Schimpf, D. Kulawinski, C. Lathe, S. Henkel, D. Rafaja, H. Biermann, and A. Weidner, Met. Mat. Trans. A (2015, in press).

  21. 21.

    A. Weidner, S. Martin, V. Klemm, U. Martin, and H. Biermann, Scripta Mater. 64, 513 (2011).

    Google Scholar 

  22. 22.

    S. Martin, S. Wolf, U. Martin, and L. Krüger, Solid State Phenom. 172–174, 172 (2011).

    Google Scholar 

  23. 23.

    D. Rafaja, C. Krbetschek, D. Borisova, H. Schreiber, and V. Klemm, Thin Solid Films 530, 105 (2013).

    Google Scholar 

  24. 24.

    D. Borisova, V. Klemm, S. Martin, S. Wolf, and D. Rafaja, Adv. Eng. Mater. 15, 571 (2013).

    Google Scholar 

  25. 25.

    A. Jahn, A. Kovalev, A. Weiss, and P.R. Scheller, Steel Res. Int. 82, 1108 (2011).

    Google Scholar 

  26. 26.

    H. Biermann, A. Glage, and M. Droste, Met. Mater. Trans. A (2015). doi:10.1007/s11661-014-2723-1.

    Google Scholar 

  27. 27.

    A. Weidner, A. Müller, A. Weiss, and H. Biermann, Mater. Sci. Eng. A 571, 68 (2013).

    Google Scholar 

  28. 28.

    A. Vinogradov, J. Acoust. Emission 17, 1 (1998).

    Google Scholar 

  29. 29.

    C.U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering (Berlin: Springer, 2010), p. 3.

    Google Scholar 

  30. 30.

    H. Hatano, J. Appl. Phys. 48, 4397 (1977).

    Google Scholar 

  31. 31.

    W. Schaarwachter and H. Ebener, Acta Metall. Mater. 38, 195 (1990).

    Google Scholar 

  32. 32.

    D. Rouby, P. Fleischmann, and C. Duvergier, Phys. Stat. solid. A 48, 439 (1978).

    Google Scholar 

  33. 33.

    A. Vinogradov, S. Hashimoto, and S. Miura, Acta Mater. 44, 2883 (1996).

    Google Scholar 

  34. 34.

    K. Kitagawa, Y. Kaneko, and A. Vinogradov, Mater. Trans. 38, 607 (1997).

    Google Scholar 

  35. 35.

    C. Scruby, H. Wadley, and J.E. Sinclair, Phil. Mag. A 44, 249 (1981).

    Google Scholar 

  36. 36.

    J. Baram and M. Rosen, Mater. Sci. Eng. 47, 243 (1981).

    Google Scholar 

  37. 37.

    J. Baram, Y. Geren, and M. Rosen, Scripta Metal. 15, 835 (1981).

    Google Scholar 

  38. 38.

    A. Vinogradov, V. Patlan, S. Hashimoto, and K. Kitagawa, Phil. Mag. A 82, 317 (2002).

    Google Scholar 

  39. 39.

    K. Darowicki, A. Mirakowski, and S. Krakowiak, Corr. Sci. 45, 1747 (2003).

    Google Scholar 

  40. 40.

    A. Danyuk, D. Merson, and A. Vinogradov, Proceedings 12th International Conference of the Slovenian Society of Non-Destructive testing, Portoroz, Slovenia, 567 (2013) pp. 567–574.

  41. 41.

    J.A. Simmons and H.N.G. Wadley, J. Research Nat. Bureau Stand. 89, 55 (1984).

    Google Scholar 

  42. 42.

    R. Pascual, M. Ahlers, and R. Ra Dacioli, Scripta Metall. 9, 79 (1975).

    Google Scholar 

  43. 43.

    S. Mintzer and R. Pascual, Scripta Metall. 12, 531 (1978).

    Google Scholar 

  44. 44.

    C.H. Caceres, W. Arneodo, R. Pascual, and H.R. Bertorello, Scripta Metall. 14, 293 (1980).

    Google Scholar 

  45. 45.

    K. Takashima, Y. Higo, and S. Nunomura, Scripta Metall. 14, 489 (1980).

    Google Scholar 

  46. 46.

    K.Takashima, Y.Higo, and S. Nunomura, Phil. Mag. A 49, 221 (1984).

    Google Scholar 

  47. 47.

    L. Manosa, A. Planes, D. Rouby, and J.L. Macqueron, Acta Metall. Mater. 38, 1635 (1990).

    Google Scholar 

  48. 48.

    K. Barat, H.N. Bar, D. Mandal, H. Royc, S. Sivaprasad, and S. Tarafder, Mater. Sci. Eng. A 597, 37 (2014).

    Google Scholar 

  49. 49.

    S.M.C. van Bohemen, J. Sietsma, M.J.M. Hermans, and I.M. Richardson, Acta Mater. 51, 4183 (2003).

    Google Scholar 

  50. 50.

    S.M.C. van Bohemen, Phil. Mag. A 95, 210 (2015).

    Google Scholar 

  51. 51.

    E. Pomponi and A. Vinogradov, Mech. Syst. Signal Proc. 40, 791 (2013).

    Google Scholar 

  52. 52.

    A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner, and H. Biermann, Acta Mater. 61, 2434 (2013).

    Google Scholar 

  53. 53.

    VEDDAC 5.0—Digitale Image Correlation Software, Chemnitzer, Werkstoffmechnik GmbH, Technologiecampus 1, 09126 Chemnitz, Germany.

  54. 54.

    C.A. Walker, Exp. Mech. 34, 281 (1994).

    Google Scholar 

  55. 55.

    G. Hartmann and T. Nicholas, Exp. Techn. 11, 24 (1987).

    Google Scholar 

  56. 56.

    J. Fang and F.H. Dai, Exp. Mech. 31, 163 (1991).

    Google Scholar 

  57. 57.

    N. Biery, M. De Graef, and T.M. Pollock, Metall. Mater. Trans. A 34, 2301 (2003).

    Google Scholar 

  58. 58.

    M. Eskandari, M.R. Yadegari-Dehnavi, A. Zarei-Hanzaki, M.A. Mohtadi-Bonab, R. Basu, and J.A. Szpunar, Opt. Las. Eng. 67, 1 (2015).

    Google Scholar 

  59. 59.

    C. Efstathiou, H. Sehitoglu, and J. Lambros, Int. J. Plast 26, 93 (2010).

    Google Scholar 

  60. 60.

    W. Abuzaid, H. Sehitoglu, and J. Lambros, Mater. Sci. Eng. A 561, 507 (2013).

    Google Scholar 

  61. 61.

    H.A. Crostack, G. Fischer, E. Soppa, S. Schmauder, and Y.L. Liu, J. Microsc. 201, 171 (2001).

    MathSciNet  Google Scholar 

  62. 62.

    M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, and X. Li, Exp. Mech. 47, 775 (2007).

    Google Scholar 

  63. 63.

    E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Ross, M. Bornet, and D. Caldemaison, Int. J. Plast 23, 1512 (2007).

    Google Scholar 

  64. 64.

    A. Tatschl and O. Kolednik, Mater. Sci. Eng. A 339, 265 (2003).

    Google Scholar 

  65. 65.

    C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Int. J. Plast 63, 198 (2014).

    Google Scholar 

  66. 66.

    M. Krottenthaler, C. Schmid, J. Schaufler, K. Durst, and M. Göken, Surf. Coat. Technol. 215, 247 (2013).

    Google Scholar 

  67. 67.

    B. Winiarski, G.S. Schajer, and P.J. Withers, Exp. Mech. 52, 793 (2012).

    Google Scholar 

  68. 68.

    H. Na, S. Nambu, M. Ojima, J. Inoue, and T. Koseki, Scripta Mater. 69, 793 (2013).

    Google Scholar 

  69. 69.

    H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Mater. Sci. Eng. A 527, 5026 (2010).

    Google Scholar 

  70. 70.

    H. Ghadbeigi, C. Pinna, and S. Celotto, Mater. Sci. Eng. A 588, 420 (2013).

    Google Scholar 

  71. 71.

    A. Ramazani, Z. Ebrahimi, and U. Prahl, Comput. Mater. Sci. 87, 241 (2014).

    Google Scholar 

  72. 72.

    M. Kimiecik, J.W. Jones, and S. Daly, Mater. Lett. 95, 25 (2013).

    Google Scholar 

  73. 73.

    A.C. Fischer-Cripps, Nanoindentation, 2nd ed. (New York: Springer, 2004).

    Google Scholar 

  74. 74.

    A.C. Fischer-Cripps, Surf. Coat. Technol. 200, 4153 (2006).

    Google Scholar 

  75. 75.

    Q. Furnemont, M. Kempf, P.J. Jacques, M. Göken, and F. Delannay, Mater. Sci. Eng. A 328, 26 (2002).

    Google Scholar 

  76. 76.

    B.B. He and M.X. Huang, Met. Mater. Trans. A 46, 688 (2015).

    Google Scholar 

  77. 77.

    B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong, Scripta Mater. 69, 215 (2013).

    Google Scholar 

  78. 78.

    H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, Prog. Mater Sci. 58, 1 (2013).

    Google Scholar 

  79. 79.

    R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Huang, J. Patscheider, and J. Michler, Thin Solid Films 469–470, 206 (2004).

    Google Scholar 

  80. 80.

    R. Ghisleni, K. Rzepiejewska-Malyska, L. Philippe, P. Schwaller, and J. Michler, Micros. Res. Technol. 72, 242 (2009).

    Google Scholar 

  81. 81.

    J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren, and J. Michler, Mater Today Electron Microsc. Spec. Issue 12, 44–45 (2010).

    Google Scholar 

  82. 82.

    B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler, Adv. Eng. Mater. 7, 388 (2005).

    Google Scholar 

  83. 83.

    K. Rzepiejewska-Malyska, M. Parlinska-Wojtan, K. Wasmer, K. Hejduk, and J. Michler, Micron 40, 22 (2009).

    Google Scholar 

  84. 84.

    K.A. Rzepiejewska-Malyska, G. Buerki, J. Michler, R.C. Major, E. Cyrankowski, S.A.S. Asif, and O.L. Warren, J. Mater. Res. 23, 1973 (2008).

    Google Scholar 

  85. 85.

    C. Niederberger, W.M. Mook, X. Maeder, and J. Michler, Mater. Sci. Eng. A 527, 4306 (2010).

    Google Scholar 

  86. 86.

    Q.X. Dai, A.D. Wang, X.N. Cheng, and X.M. Luo, Chin. Phys. 11, 596 (2002).

    Google Scholar 

  87. 87.

    D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, J. Appl. Cryst. 47, 947 (2014).

    Google Scholar 

  88. 88.

    S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, Metall. Mater. Trans. A (2014). doi:10.1007/s11661-014-2684-4.

    Google Scholar 

  89. 89.

    H. Biermann, S. Solarek, and A. Weidner, Steel Res. Int. 83, 512 (2012).

    Google Scholar 

  90. 90.

    L. Remy, A. Pineau, and B. Thomas, Mater. Sci. Eng. 36, 47 (1978).

    Google Scholar 

  91. 91.

    L. Krüger, S. Wolf, U. Martin, S. Martin, P.R. Scheller, A. Jahn, and A. Weiss, J. Phys. Conf. Ser. 240, 12098 (2010).

    Google Scholar 

  92. 92.

    A. Kovalev, A. Jahn, A. Weiß, S. Wolf, and P.R. Scheller, Steel Res. Int. 82, 1108 (2011).

    Google Scholar 

  93. 93.

    Hysitron, http://www.hysitron.com/Portals/0/Updated%20Address/SEMSS_SAM-0072-A.pdf. Accessed 24 March 2015.

  94. 94.

    A. Weidner, U. Hangen, and H. Biermann, Phil. Mag. Lett. 94, 522 (2014).

    Google Scholar 

  95. 95.

    A. Weidner, C. Segel, and H. Biermann, Mater. Lett. 143, 155 (2015).

    Google Scholar 

  96. 96.

    Ferritscope© FMP30—Helmut Fischer GmbH, Industriestarße 21, 7106 9 Sindelfingen-Maichingen.

  97. 97.

    J. Talonen, PhD thesis, Helsinki (2007).

  98. 98.

    A. Weiß, H. Gutte, and P.R. Scheller; Proceedings of the Fifth Stainless Steel Science and Market Congress, (2005).

  99. 99.

    A. Weidner, A. Glage, and H. Biermann, Proc. Eng. 2, 1961 (2010).

    Google Scholar 

  100. 100.

    S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja, J. Appl. Cryst. 44, 779 (2011).

    Google Scholar 

  101. 101.

    S. Martin, C. Ullrich, and D. Rafaja, Proceedings ICOMAT 2014, Materials Today (2015).

  102. 102.

    J.-B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park, Acta Mater. 61, 558 (2013).

    Google Scholar 

  103. 103.

    M. Linderov, C. Segel, A. Weidner, H. Biermann, and A. Vinogradov, Mater. Sci. Eng. A 597, 183 (2014).

    Google Scholar 

  104. 104.

    S. Zaefferer and N.N. Elhami, Acta Mater. 75, 20 (2014).

    Google Scholar 

  105. 105.

    H. Mansour, J. Guyon, M.A. Crimp, N. Gey, B. Beausir, and N. Maloufi, Scripta Mater. 84–85, 11 (2014).

    Google Scholar 

  106. 106.

    A. Weidner and H. Biermann, Phil. Mag. A 95, 759 (2015).

    Google Scholar 

  107. 107.

    D.G. Coates, Phil. Mag. 16, 1179 (1967).

    Google Scholar 

  108. 108.

    G.R. Booker, M.B. Shawa, M.J. Whelan, and P.B. Hirsch, Phil. Mag. 16, 1185 (1967).

    Google Scholar 

  109. 109.

    J. Talonen and H. Hänninen, Acta Mater. 55, 6108 (2007).

    Google Scholar 

  110. 110.

    J. Thomas and T. Gemming, Analytical Transmission Electron Microscopy (Wien: Springer, 2014), p. 135.

    Google Scholar 

  111. 111.

    H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jaqcues, Acta Mater. 58, 2464 (2010).

    Google Scholar 

  112. 112.

    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Google Scholar 

  113. 113.

    J.G. Sevillano, Scripta Mater. 60, 336 (2009).

    Google Scholar 

  114. 114.

    S. Martin, S. Wolf, S. Decker, L. Krüger, and U. Martin; Steel Res. Int. (2015, in press).

  115. 115.

    G.V. Kurdjumov and G. Sachs, Z. Phys. 32, 325 (1930).

    Google Scholar 

  116. 116.

    H. Schumann, Krist. Tech. 1, 663 (1976).

    Google Scholar 

  117. 117.

    H. Schumann, Krist. Tech. 12, 363 (1977).

    Google Scholar 

  118. 118.

    J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K. Chin, S. Kim, and B.C. De Cooman, Met. Mat. Trans. A 43, 479 (2012).

    Google Scholar 

Download references

Acknowledgement

The authors thank the German Research Foundation (DFG) for the financial support of the Collaborative Research Centre “TRIP-Matrix Composite” (CRC 799), subproject B5. PhD M. Linderov and Prof. A. Vinogradov are acknowledged for their assistance with the AE data analysis. Dipl.-Ing. J. Solarek and Dipl.-Ing. C. Segel are acknowledged for performing the in situ tests and the µDIC, respectively. Dr. S. Martin is acknowledged for providing the TEM foil for the t-SEM investigations. Dr. U. Hangen is acknowledged for the assistance with the in situ nanoindentation experiments. Furthermore, the authors would kindly express their thanks to all colleagues of the CRC contributing to the comprehensive results reported in this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anja Weidner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weidner, A., Biermann, H. Combination of Different In Situ Characterization Techniques and Scanning Electron Microscopy Investigations for a Comprehensive Description of the Tensile Deformation Behavior of a CrMnNi TRIP/TWIP Steel. JOM 67, 1729–1747 (2015). https://doi.org/10.1007/s11837-015-1456-y

Download citation

Keywords

  • Austenite
  • Martensite
  • Acoustic Emission
  • Digital Image Correlation
  • Acoustic Emission Signal