Advertisement

JOM

, Volume 67, Issue 8, pp 1729–1747 | Cite as

Combination of Different In Situ Characterization Techniques and Scanning Electron Microscopy Investigations for a Comprehensive Description of the Tensile Deformation Behavior of a CrMnNi TRIP/TWIP Steel

  • Anja WeidnerEmail author
  • Horst Biermann
Article

Abstract

The class of low-carbon, high-alloy CrMnNi steels exhibits outstanding mechanical properties with respect to high strength and ductility due to either transformation-induced plasticity (TRIP) or twinning-induced plasticity (TWIP) effect depending on chemical composition and deformation temperature. However, the ongoing deformation mechanisms like the formation of stacking faults, martensitic phase transformation or deformation-induced twinning are overlapping and the kinetics of the microstructure evolution are quite complex. Therefore, in addition to macroscopic deformation tests and microstructural investigations by scanning electron microscopy, a combination of several in situ characterization techniques with either high lateral and/or temporal resolution as well as providing integral volume information were chosen in order to give a thoroughly and comprehensive description of the deformation behavior of CrMnNi TRIP/TWIP steels. In addition, the complementary in situ techniques like in situ nanoindentation, micro-digital image correlation, and acoustic emission measurements provide excellent possibility for description of materials behavior on a multiscale level from the submicrometer scale up to the macroscopic range. The results obtained by the complementary techniques can support the future modeling of the deformation behavior of TRIP/TWIP steels dependent on chemical composition, temperature, grain size and grain orientation.

Keywords

Austenite Martensite Acoustic Emission Digital Image Correlation Acoustic Emission Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thank the German Research Foundation (DFG) for the financial support of the Collaborative Research Centre “TRIP-Matrix Composite” (CRC 799), subproject B5. PhD M. Linderov and Prof. A. Vinogradov are acknowledged for their assistance with the AE data analysis. Dipl.-Ing. J. Solarek and Dipl.-Ing. C. Segel are acknowledged for performing the in situ tests and the µDIC, respectively. Dr. S. Martin is acknowledged for providing the TEM foil for the t-SEM investigations. Dr. U. Hangen is acknowledged for the assistance with the in situ nanoindentation experiments. Furthermore, the authors would kindly express their thanks to all colleagues of the CRC contributing to the comprehensive results reported in this paper.

References

  1. 1.
    W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park, Met. Mater. Trans. A 33, 1689 (2002).Google Scholar
  2. 2.
    M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010).Google Scholar
  3. 3.
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Acta Mater. 51, 2611 (2003).Google Scholar
  4. 4.
    B.C. De Cooman, Curr. Opin. Sol. State Mater. Sci. 8, 285 (2004).Google Scholar
  5. 5.
    J.H. Shin, J.S. Jeong, and J.W. Lee, Mater. Charac. 99, 230 (2015).Google Scholar
  6. 6.
    O. Grässel, L. Krüger, G. Formmeyer, and L.W. Meyer, Int. J. Plast 16, 1391 (2000).Google Scholar
  7. 7.
    G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Inter. 43, 438 (2003).Google Scholar
  8. 8.
    C. Herrera, D. Ponge, and D. Raabe, Acta Mater. 59, 4653 (2011).Google Scholar
  9. 9.
    G.B. Olson and M. Cohen, Met. Mat. Trans. A 6, 791 (1975).Google Scholar
  10. 10.
    G.B. Olson, Transformation plasticity and stability of plastic flow, in Deformation, Processing and Structure, ed. by G. Krauss (Metals park, OH: ASM, 1984), pp. 391–424.Google Scholar
  11. 11.
    V.I. Levistas, A.V. Idesman, and G.B. Olson, Acta Mater. 47, 219 (1999).Google Scholar
  12. 12.
    B.C. de Cooman, O. Kwon, and K.G. Chin, Mater. Sci. Technol. 28, 513 (2012).Google Scholar
  13. 13.
    O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).Google Scholar
  14. 14.
    K. Renard, S. Ryelandt, and P.J. Jacques, Mater. Sci. Eng. A 527, 2969 (2010).Google Scholar
  15. 15.
    A. Weiß, H. Gutte, M. Radke, and P.R. Scheller, patent specification WO 0020 08009722A1.Google Scholar
  16. 16.
    A. Jahn, A. Kovalev, A. Weiss, S. Wolf, L. Krüger, and P.R. Scheller, Steel Res. Int. 82, 39 (2011).Google Scholar
  17. 17.
    A. Glage, A. Weidner, and H. Biermann, Steel Res. Int. 82, 1040 (2011).Google Scholar
  18. 18.
    S. Ackermann, D. Kulawinski, S. Henkel, and H. Biermann, Int. J. Fatig. 67, 123 (2014).Google Scholar
  19. 19.
    D. Ehinger, L. Krüger, U. Martin, C. Weigelt, and C.G. Aneziris, Steel Res. Int. 82, 1048 (2011).Google Scholar
  20. 20.
    S. Ackermann, S. Martin, M.R. Schwarz, C. Schimpf, D. Kulawinski, C. Lathe, S. Henkel, D. Rafaja, H. Biermann, and A. Weidner, Met. Mat. Trans. A (2015, in press).Google Scholar
  21. 21.
    A. Weidner, S. Martin, V. Klemm, U. Martin, and H. Biermann, Scripta Mater. 64, 513 (2011).Google Scholar
  22. 22.
    S. Martin, S. Wolf, U. Martin, and L. Krüger, Solid State Phenom. 172–174, 172 (2011).Google Scholar
  23. 23.
    D. Rafaja, C. Krbetschek, D. Borisova, H. Schreiber, and V. Klemm, Thin Solid Films 530, 105 (2013).Google Scholar
  24. 24.
    D. Borisova, V. Klemm, S. Martin, S. Wolf, and D. Rafaja, Adv. Eng. Mater. 15, 571 (2013).Google Scholar
  25. 25.
    A. Jahn, A. Kovalev, A. Weiss, and P.R. Scheller, Steel Res. Int. 82, 1108 (2011).Google Scholar
  26. 26.
    H. Biermann, A. Glage, and M. Droste, Met. Mater. Trans. A (2015). doi: 10.1007/s11661-014-2723-1.Google Scholar
  27. 27.
    A. Weidner, A. Müller, A. Weiss, and H. Biermann, Mater. Sci. Eng. A 571, 68 (2013).Google Scholar
  28. 28.
    A. Vinogradov, J. Acoust. Emission 17, 1 (1998).Google Scholar
  29. 29.
    C.U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering (Berlin: Springer, 2010), p. 3.Google Scholar
  30. 30.
    H. Hatano, J. Appl. Phys. 48, 4397 (1977).Google Scholar
  31. 31.
    W. Schaarwachter and H. Ebener, Acta Metall. Mater. 38, 195 (1990).Google Scholar
  32. 32.
    D. Rouby, P. Fleischmann, and C. Duvergier, Phys. Stat. solid. A 48, 439 (1978).Google Scholar
  33. 33.
    A. Vinogradov, S. Hashimoto, and S. Miura, Acta Mater. 44, 2883 (1996).Google Scholar
  34. 34.
    K. Kitagawa, Y. Kaneko, and A. Vinogradov, Mater. Trans. 38, 607 (1997).Google Scholar
  35. 35.
    C. Scruby, H. Wadley, and J.E. Sinclair, Phil. Mag. A 44, 249 (1981).Google Scholar
  36. 36.
    J. Baram and M. Rosen, Mater. Sci. Eng. 47, 243 (1981).Google Scholar
  37. 37.
    J. Baram, Y. Geren, and M. Rosen, Scripta Metal. 15, 835 (1981).Google Scholar
  38. 38.
    A. Vinogradov, V. Patlan, S. Hashimoto, and K. Kitagawa, Phil. Mag. A 82, 317 (2002).Google Scholar
  39. 39.
    K. Darowicki, A. Mirakowski, and S. Krakowiak, Corr. Sci. 45, 1747 (2003).Google Scholar
  40. 40.
    A. Danyuk, D. Merson, and A. Vinogradov, Proceedings 12th International Conference of the Slovenian Society of Non-Destructive testing, Portoroz, Slovenia, 567 (2013) pp. 567–574.Google Scholar
  41. 41.
    J.A. Simmons and H.N.G. Wadley, J. Research Nat. Bureau Stand. 89, 55 (1984).Google Scholar
  42. 42.
    R. Pascual, M. Ahlers, and R. Ra Dacioli, Scripta Metall. 9, 79 (1975).Google Scholar
  43. 43.
    S. Mintzer and R. Pascual, Scripta Metall. 12, 531 (1978).Google Scholar
  44. 44.
    C.H. Caceres, W. Arneodo, R. Pascual, and H.R. Bertorello, Scripta Metall. 14, 293 (1980).Google Scholar
  45. 45.
    K. Takashima, Y. Higo, and S. Nunomura, Scripta Metall. 14, 489 (1980).Google Scholar
  46. 46.
    K.Takashima, Y.Higo, and S. Nunomura, Phil. Mag. A 49, 221 (1984).Google Scholar
  47. 47.
    L. Manosa, A. Planes, D. Rouby, and J.L. Macqueron, Acta Metall. Mater. 38, 1635 (1990).Google Scholar
  48. 48.
    K. Barat, H.N. Bar, D. Mandal, H. Royc, S. Sivaprasad, and S. Tarafder, Mater. Sci. Eng. A 597, 37 (2014).Google Scholar
  49. 49.
    S.M.C. van Bohemen, J. Sietsma, M.J.M. Hermans, and I.M. Richardson, Acta Mater. 51, 4183 (2003).Google Scholar
  50. 50.
    S.M.C. van Bohemen, Phil. Mag. A 95, 210 (2015).Google Scholar
  51. 51.
    E. Pomponi and A. Vinogradov, Mech. Syst. Signal Proc. 40, 791 (2013).Google Scholar
  52. 52.
    A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner, and H. Biermann, Acta Mater. 61, 2434 (2013).Google Scholar
  53. 53.
    VEDDAC 5.0—Digitale Image Correlation Software, Chemnitzer, Werkstoffmechnik GmbH, Technologiecampus 1, 09126 Chemnitz, Germany.Google Scholar
  54. 54.
    C.A. Walker, Exp. Mech. 34, 281 (1994).Google Scholar
  55. 55.
    G. Hartmann and T. Nicholas, Exp. Techn. 11, 24 (1987).Google Scholar
  56. 56.
    J. Fang and F.H. Dai, Exp. Mech. 31, 163 (1991).Google Scholar
  57. 57.
    N. Biery, M. De Graef, and T.M. Pollock, Metall. Mater. Trans. A 34, 2301 (2003).Google Scholar
  58. 58.
    M. Eskandari, M.R. Yadegari-Dehnavi, A. Zarei-Hanzaki, M.A. Mohtadi-Bonab, R. Basu, and J.A. Szpunar, Opt. Las. Eng. 67, 1 (2015).Google Scholar
  59. 59.
    C. Efstathiou, H. Sehitoglu, and J. Lambros, Int. J. Plast 26, 93 (2010).Google Scholar
  60. 60.
    W. Abuzaid, H. Sehitoglu, and J. Lambros, Mater. Sci. Eng. A 561, 507 (2013).Google Scholar
  61. 61.
    H.A. Crostack, G. Fischer, E. Soppa, S. Schmauder, and Y.L. Liu, J. Microsc. 201, 171 (2001).MathSciNetGoogle Scholar
  62. 62.
    M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, and X. Li, Exp. Mech. 47, 775 (2007).Google Scholar
  63. 63.
    E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Ross, M. Bornet, and D. Caldemaison, Int. J. Plast 23, 1512 (2007).Google Scholar
  64. 64.
    A. Tatschl and O. Kolednik, Mater. Sci. Eng. A 339, 265 (2003).Google Scholar
  65. 65.
    C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Int. J. Plast 63, 198 (2014).Google Scholar
  66. 66.
    M. Krottenthaler, C. Schmid, J. Schaufler, K. Durst, and M. Göken, Surf. Coat. Technol. 215, 247 (2013).Google Scholar
  67. 67.
    B. Winiarski, G.S. Schajer, and P.J. Withers, Exp. Mech. 52, 793 (2012).Google Scholar
  68. 68.
    H. Na, S. Nambu, M. Ojima, J. Inoue, and T. Koseki, Scripta Mater. 69, 793 (2013).Google Scholar
  69. 69.
    H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Mater. Sci. Eng. A 527, 5026 (2010).Google Scholar
  70. 70.
    H. Ghadbeigi, C. Pinna, and S. Celotto, Mater. Sci. Eng. A 588, 420 (2013).Google Scholar
  71. 71.
    A. Ramazani, Z. Ebrahimi, and U. Prahl, Comput. Mater. Sci. 87, 241 (2014).Google Scholar
  72. 72.
    M. Kimiecik, J.W. Jones, and S. Daly, Mater. Lett. 95, 25 (2013).Google Scholar
  73. 73.
    A.C. Fischer-Cripps, Nanoindentation, 2nd ed. (New York: Springer, 2004).Google Scholar
  74. 74.
    A.C. Fischer-Cripps, Surf. Coat. Technol. 200, 4153 (2006).Google Scholar
  75. 75.
    Q. Furnemont, M. Kempf, P.J. Jacques, M. Göken, and F. Delannay, Mater. Sci. Eng. A 328, 26 (2002).Google Scholar
  76. 76.
    B.B. He and M.X. Huang, Met. Mater. Trans. A 46, 688 (2015).Google Scholar
  77. 77.
    B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong, Scripta Mater. 69, 215 (2013).Google Scholar
  78. 78.
    H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, Prog. Mater Sci. 58, 1 (2013).Google Scholar
  79. 79.
    R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Huang, J. Patscheider, and J. Michler, Thin Solid Films 469–470, 206 (2004).Google Scholar
  80. 80.
    R. Ghisleni, K. Rzepiejewska-Malyska, L. Philippe, P. Schwaller, and J. Michler, Micros. Res. Technol. 72, 242 (2009).Google Scholar
  81. 81.
    J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren, and J. Michler, Mater Today Electron Microsc. Spec. Issue 12, 44–45 (2010).Google Scholar
  82. 82.
    B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler, Adv. Eng. Mater. 7, 388 (2005).Google Scholar
  83. 83.
    K. Rzepiejewska-Malyska, M. Parlinska-Wojtan, K. Wasmer, K. Hejduk, and J. Michler, Micron 40, 22 (2009).Google Scholar
  84. 84.
    K.A. Rzepiejewska-Malyska, G. Buerki, J. Michler, R.C. Major, E. Cyrankowski, S.A.S. Asif, and O.L. Warren, J. Mater. Res. 23, 1973 (2008).Google Scholar
  85. 85.
    C. Niederberger, W.M. Mook, X. Maeder, and J. Michler, Mater. Sci. Eng. A 527, 4306 (2010).Google Scholar
  86. 86.
    Q.X. Dai, A.D. Wang, X.N. Cheng, and X.M. Luo, Chin. Phys. 11, 596 (2002).Google Scholar
  87. 87.
    D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, J. Appl. Cryst. 47, 947 (2014).Google Scholar
  88. 88.
    S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, Metall. Mater. Trans. A (2014). doi: 10.1007/s11661-014-2684-4.Google Scholar
  89. 89.
    H. Biermann, S. Solarek, and A. Weidner, Steel Res. Int. 83, 512 (2012).Google Scholar
  90. 90.
    L. Remy, A. Pineau, and B. Thomas, Mater. Sci. Eng. 36, 47 (1978).Google Scholar
  91. 91.
    L. Krüger, S. Wolf, U. Martin, S. Martin, P.R. Scheller, A. Jahn, and A. Weiss, J. Phys. Conf. Ser. 240, 12098 (2010).Google Scholar
  92. 92.
    A. Kovalev, A. Jahn, A. Weiß, S. Wolf, and P.R. Scheller, Steel Res. Int. 82, 1108 (2011).Google Scholar
  93. 93.
  94. 94.
    A. Weidner, U. Hangen, and H. Biermann, Phil. Mag. Lett. 94, 522 (2014).Google Scholar
  95. 95.
    A. Weidner, C. Segel, and H. Biermann, Mater. Lett. 143, 155 (2015).Google Scholar
  96. 96.
    Ferritscope© FMP30—Helmut Fischer GmbH, Industriestarße 21, 7106 9 Sindelfingen-Maichingen.Google Scholar
  97. 97.
    J. Talonen, PhD thesis, Helsinki (2007).Google Scholar
  98. 98.
    A. Weiß, H. Gutte, and P.R. Scheller; Proceedings of the Fifth Stainless Steel Science and Market Congress, (2005).Google Scholar
  99. 99.
    A. Weidner, A. Glage, and H. Biermann, Proc. Eng. 2, 1961 (2010).Google Scholar
  100. 100.
    S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja, J. Appl. Cryst. 44, 779 (2011).Google Scholar
  101. 101.
    S. Martin, C. Ullrich, and D. Rafaja, Proceedings ICOMAT 2014, Materials Today (2015).Google Scholar
  102. 102.
    J.-B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park, Acta Mater. 61, 558 (2013).Google Scholar
  103. 103.
    M. Linderov, C. Segel, A. Weidner, H. Biermann, and A. Vinogradov, Mater. Sci. Eng. A 597, 183 (2014).Google Scholar
  104. 104.
    S. Zaefferer and N.N. Elhami, Acta Mater. 75, 20 (2014).Google Scholar
  105. 105.
    H. Mansour, J. Guyon, M.A. Crimp, N. Gey, B. Beausir, and N. Maloufi, Scripta Mater. 84–85, 11 (2014).Google Scholar
  106. 106.
    A. Weidner and H. Biermann, Phil. Mag. A 95, 759 (2015).Google Scholar
  107. 107.
    D.G. Coates, Phil. Mag. 16, 1179 (1967).Google Scholar
  108. 108.
    G.R. Booker, M.B. Shawa, M.J. Whelan, and P.B. Hirsch, Phil. Mag. 16, 1185 (1967).Google Scholar
  109. 109.
    J. Talonen and H. Hänninen, Acta Mater. 55, 6108 (2007).Google Scholar
  110. 110.
    J. Thomas and T. Gemming, Analytical Transmission Electron Microscopy (Wien: Springer, 2014), p. 135.Google Scholar
  111. 111.
    H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jaqcues, Acta Mater. 58, 2464 (2010).Google Scholar
  112. 112.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).Google Scholar
  113. 113.
    J.G. Sevillano, Scripta Mater. 60, 336 (2009).Google Scholar
  114. 114.
    S. Martin, S. Wolf, S. Decker, L. Krüger, and U. Martin; Steel Res. Int. (2015, in press).Google Scholar
  115. 115.
    G.V. Kurdjumov and G. Sachs, Z. Phys. 32, 325 (1930).Google Scholar
  116. 116.
    H. Schumann, Krist. Tech. 1, 663 (1976).Google Scholar
  117. 117.
    H. Schumann, Krist. Tech. 12, 363 (1977).Google Scholar
  118. 118.
    J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K. Chin, S. Kim, and B.C. De Cooman, Met. Mat. Trans. A 43, 479 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Institute of Materials EngineeringTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations