Skip to main content
Log in

Lamellar Microstructure Alignment in Ti-47Al Alloy by Electromagnetic Confinement and Directional Solidification Using a Seed

  • Published:
JOM Aims and scope Submit manuscript

Abstract

As a promising electromagnetic process to obtain TiAl samples without contamination, electromagnetic confinement and directional solidification was successfully applied for lamellar microstructure control in Ti-47Al alloy. Seeded by a Ti-43Al-3Si seed, columnar α grains grew stably and the lamellae within these grains were aligned parallel to the growth direction. However, stray α or β grains, in which the lamellae were complex, nucleated and grew in the sample edge. The possible reasons for the formation of stray grains were discussed by analyzing the temperature gradient at the solid/liquid interface and the macrosegregation of Ti5Si3 particles and Al solute along the sample radius. Moreover, the fluid flow induced by electromagnetic force, which led to the macrosegregation, was also discussed by using a simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.-W. Kim, JOM 46, 30 (1994).

    Article  Google Scholar 

  2. K.S. Chan, JOM 49, 53 (1997).

    Article  Google Scholar 

  3. X.H. Wu, Intermetallics 14, 1114 (2006).

    Article  Google Scholar 

  4. J. Lapin, T. Pelachová, and M. Dománková, Intermetallics 19, 814 (2011).

    Article  Google Scholar 

  5. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  Google Scholar 

  6. D.R. Johnson, H. Inui, S. Muto, Y. Omiya, and T. Yamanaka, Acta Mater. 54, 1077 (2006).

    Article  Google Scholar 

  7. D.R. Johnson, Y. Masuda, H. Inui, and M. Yamaguchi, Acta Mater. 45, 2523 (1997).

    Article  Google Scholar 

  8. A.H. Liu, B.S. Li, H. Nan, Y.W. Sui, J.J. Guo, and H.Z. Fu, Rare Met. Mater. Eng. 37, 956 (2008).

    Article  Google Scholar 

  9. J.L. Fan, X.Z. Li, Y.Q. Su, R.R. Chen, J.J. Guo, and H.Z. Fu, Trans. Nonferrous Met. Soc. China 22, 1073 (2012).

    Article  Google Scholar 

  10. J. Lapin and L. Ondrúš, Kovové Mater. 40, 161 (2002).

    Google Scholar 

  11. H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, and M. Yamaguchi, Acta Mater. 48, 3221 (2000).

    Article  Google Scholar 

  12. M. Takeyama, Y. Yamamoto, H. Morishima, K. Koike, S.Y. Chang, and T. Matsuo, Mater. Sci. Eng. A 329, 7 (2002).

    Article  Google Scholar 

  13. S.M. Li, J.S. Li, Q.T. Hao, H.C. Kou, J.G. Li, and H.Z. Fu, J. Mater. Process. Tech. 137, 204 (2003).

    Article  Google Scholar 

  14. J. Shen, J.G. Li, and H.Z. Fu, J. Mater. Process. Tech. 102, 109 (2000).

    Article  Google Scholar 

  15. C.J. Song, G.F. Liang, Z.M. Xu, J. Shen, and J.G. Li, J. Mater. Process. Tech. 180, 179 (2006).

    Article  Google Scholar 

  16. Y.J. Du, J. Shen, Y.L. Xiong, Z.W. Liu, Q. Zhao, and H.Z. Fu, JOM 66, 1914 (2014).

    Article  Google Scholar 

  17. M. Yamaguchi, D.R. Johnson, H.N. Lee, and H. Inui, Intermetallics 8, 511 (2000).

    Article  Google Scholar 

  18. X.Z. Li, T. Sun, C.X. Yu, Y.Q. Su, Y.Z. Cao, J.J. Guo, and H.Z. Fu, Acta Metall. Sin. 45, 1479 (2009).

    Google Scholar 

  19. D.R. Johnson, Y. Masuda, H. Inui, and M. Yamaguchi, Mat. Sci. Eng. A. 239, 577 (1997).

    Article  Google Scholar 

  20. W.Z. Luo, J. Shen, Z.X. Min, and H.Z. Fu, J. Cryst. Growth 310, 5441 (2008).

    Article  Google Scholar 

  21. F.H. Froes, C. Suryanarayana, and D. Eliezer, J. Mater. Sci. 27, 5113 (1992).

    Article  Google Scholar 

  22. J.-C. Chen and C. Hu, J. Cryst. Growth 158, 289 (1996).

    Article  Google Scholar 

  23. C. Hu and J.-C. Chen, Int. J. Heat Mass Transf. 39, 3347 (1996).

    Article  Google Scholar 

  24. H.T. Zhang, H. Nagaumi, and J.Z. Cui, Mater. Sci. Eng. A 448, 177 (2007).

    Article  Google Scholar 

  25. J. Sakane, B.Q. Li, and J.W. Evans, Metall. Trans. B 19, 397 (1988).

    Article  Google Scholar 

  26. B.Q. Li, J. Mater. Process. Tech. 55, 351 (1995).

    Article  Google Scholar 

  27. G. Zimmermann, L. Sturz, and J. Dagner, 5th International Symposium on Electromagnetic Processing of Materials, Sendai (2006), p. 375.

  28. W.D. Griffiths and D.G. McCartney, Mater. Sci. Eng. A 222, 140 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 51174167, and the Research Fund of State Key Laboratory of Solidification Processing (NWPU), China under Grant No. 63-TP-2011. It is also supported by the Doctorate Foundation of Northwestern Polytechnical University under Contract No. CX201308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Shen, J., Xiong, Y. et al. Lamellar Microstructure Alignment in Ti-47Al Alloy by Electromagnetic Confinement and Directional Solidification Using a Seed. JOM 67, 1258–1264 (2015). https://doi.org/10.1007/s11837-015-1438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1438-0

Keywords

Navigation