Skip to main content

Advertisement

Log in

Toward Rare-Earth-Free Permanent Magnets: A Combinatorial Approach Exploiting the Possibilities of Modeling, Shape Anisotropy in Elongated Nanoparticles, and Combinatorial Thin-Film Approach

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The objective of the rare-earth free permanent magnets (REFREEPM) project is to develop a new generation of high-performance permanent magnets (PMs) without rare earths. Our approach is based on modeling using a combinatorial approach together with micromagnetic modeling and the realization of the modeled systems (I) by using a novel production of high-aspect-ratio (>5) nanostructrures (nanowires, nanorods, and nanoflakes) by exploiting the magnetic shape anisotropy of the constituents that can be produced via chemical nanosynthesis polyol process or electrodeposition, which can be consolidated with novel processes for a new generation of rare-earth free PMs with energy product in the range of 60 kJ/m3 < (BH)max < 160 kJ/m3 at room temperature, and (II) by using a high-throughput thin-film synthesis and high-throughput characterization approach to identify promising candidate materials that can be stabilized in a tetragonal or hexagonal structure by epitaxial growth on selected substrates, under various conditions of pressure, stoichiometry, and temperature. In this article, we report the progress so far in selected phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Lyubina, B. Rellinghaus, O. Gutfleisch, and M. Albrecht, Handbook of Magnetic Materials, Vol. 19, ed. K.H.J. Buschow (Cambridge: Elsevier, 2011), pp. 291–407.

    Google Scholar 

  2. B. Das, B. Balamurugun, P. Kumar, R. Skomski, V.R. Shah, J.E. Shield, A. Kashyap, and D.J. Sellmyer, IEEE Trans. Magn. 49, 3330 (2013).

    Article  Google Scholar 

  3. J.M.D. Coey, IEEE Trans. Magn. 47, 4671 (2011).

    Article  Google Scholar 

  4. Report on Critical Raw Materials for EU, May 2014.

  5. U.S. Department of Energy, Critical Materials Strategy (Washington, DC: U.S. Department of Energy, 2011), http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf

  6. A.I. Liechtenstein, M.I. Katsnelson, and V.A. Gubanov, J. Phys. F: Met. Phys. 14, L125 (1984).

    Article  Google Scholar 

  7. A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, J. Magn. Magn. Mater. 54–57, 965 (1986).

    Article  Google Scholar 

  8. X. Wang, R. Wu, D. Wang, and A. Freeman, Phys. Rev. B 54, 61 (1996).

    Article  Google Scholar 

  9. A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).

    Article  Google Scholar 

  10. G. Daalderop, P.J. Kelly, and M. Schuurmans, Phys. Rev. B 41, 11919 (1990).

    Article  Google Scholar 

  11. I. Turek, J. Kudrnovský, and K. Carva, Phys. Rev B 86, 174430 (2012).

    Article  Google Scholar 

  12. C. Neise, S. Schönecker, M. Richter, K. Koepernik, and H. Eschrig, Phys. Stat. Solidi B 248, 2398 (2011).

    Article  Google Scholar 

  13. P. Soven, Phys. Rev. 156, 671 (1967).

    Article  Google Scholar 

  14. P. Blaha, G. Madsen, K. Schwarz, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Wien University, 2001).

    Google Scholar 

  15. D.D. Koelling and H.N. Harmon, J. Phys. C 10, 3107 (1977).

    Article  Google Scholar 

  16. A.H. MacDonald, W.E. Picket, and D.D. Koelling, J. Phys. C. 13, 2675 (1980).

    Article  Google Scholar 

  17. H. Ebert, Munich SPR-KKR Pack 6, 3 (2012).

    Google Scholar 

  18. H. Ebert, D. Ködderitzsch, and J. Minár, Reports. Progr. Phys. 74, 096501 (2011).

    Article  Google Scholar 

  19. G. Kurdjumov, Metall. Trans. A 7, 999 (1976).

    Article  Google Scholar 

  20. R. Naraghi, M. Selleby, and J.A. Gren, CALPHAD 46, 148 (2014).

    Article  Google Scholar 

  21. G. Kurdjumov and A. Khachaturyan, Acta Metall. 23, 1077 (1975).

    Article  Google Scholar 

  22. D. Bonnenberg, K.A. Hempel, and H.P.J. Wijn, Landolt-Börnstein—Group III Condensed Matter: 3D, 4D and 5D Elements, Alloys and Compounds, Vol. 19a, ed. H.P.J. Wijn (New York: Springer, 1986),

    Google Scholar 

  23. A. Watson and L. Cornish, Landolt-Börnstein—Group IV Physical Chemistry: 3D, 4D and 5D Elements, Alloys and Compounds, ed. H.P.J. Wijn (New York: Springer, 2008), pp. 587–608.

    Google Scholar 

  24. T. Burkert, L. Nordström, O. Eriksson, and O. Heinonen, Phys. Rev. Lett. 93, 027203 (2004).

    Article  Google Scholar 

  25. E.K. Delczeg-Czirjak, A. Edström, M. Werwiński, J. Rusz, N.V. Skorodumova, L. Vitos, and O. Eriksson, Phys. Rev. B 89, 144403 (2014).

    Article  Google Scholar 

  26. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  Google Scholar 

  27. L. Reichel, G. Giannopoulos, S. Kauffmann-Weiss, M. Hoffmann, D. Pohl, A. Edström, S. Oswald, D. Niarchos, J. Rusz, L. Schultz, and S. Fähler, J. Appl. Phys. 116, 213901 (2014).

    Article  Google Scholar 

  28. A. Edström, J. Chico, A. Jakobsson, A. Bergman, and J. Rusz, Phys. Rev. B 90, 014402 (2014).

    Article  Google Scholar 

  29. D. Weller, A. Moser, L. Folks, M. Best, W. Lee, M.F. Toney, M. Schwickert, J.-U. Thiele, M.F. Doerner, and I.E.E.E. Trans, Magn. 36, 10 (2000).

    Article  Google Scholar 

  30. K. Gandha, K. Elkins, N. Poudyal, X. Liu, and J.P. Liu, Sci. Rep. 4, 5345 (2014).

    Article  Google Scholar 

  31. K. Ait Atmane, F. Zighem, Y. Soumare, M. Ibrahim, R. Boubekri, T. Maurer, J. Margueritat, J.-Y. Piquemal, F. Ott, G. Chaboussant, F. Schoenstein, N. Jouini, and G. Viau, J. Solid State Chem. 197, 297 (2013).

    Article  Google Scholar 

  32. P. Toson, W. Wallisch, A. Asali, and J. Fidler, EPJ Web Conf. 75, 03002 (2014).

    Article  Google Scholar 

  33. T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J.-Y. Piquemal, and G. Viau, Appl. Phys. Lett. 91, 172501 (2007).

    Article  Google Scholar 

  34. Y. Soumare, C. Garcia, T. Maurer, G. Chaboussant, F. Ott, F. Fiévet, J.-Y. Piquemal, and G. Viau, Adv. Func. Mater. 19, 1971 (2009).

    Article  Google Scholar 

  35. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J. Ping, Liu. Adv. Mater. 23, 821 (2011).

    Article  Google Scholar 

  36. B. Balamurugan, D.J. Sellmyer, G.C. Hadjipanayis, and R. Skomski, Scripta Mater. 67, 542 (2012).

    Article  Google Scholar 

  37. C. Bran, YuP Ivanov, J. García, R.P. del Real, V.M. Prida, O. Chubykalo-Fesenko, and M. Vazquez, J. Appl. Phys. 114, 043908 (2013).

    Article  Google Scholar 

  38. C. Bran, E.M. Palmero, R.P. del Real, and M. Vazquez, Phys. Stat. Solidi A 211, 1076 (2014).

    Article  Google Scholar 

  39. C. Bran, Y.P. Ivanov, D.G. Trabada, J. Tomkowicz, R.P. del Real, O. Chubykalo-Fesenko, and M. Vazquez, IEEE Trans. Magn. 49, 4491 (2013).

    Article  Google Scholar 

  40. C. Bran, E.M. Palmero, Zi-An Li, R.P. del Real, M. Spasova, M. Farle, and M. Vázquez (in press).

  41. B. Rodriguez-Gonzalez, C. Bran, T. Warnatz, J. Rivas, and M. Vazquez, J. Appl. Phys. 115, 133904 (2014).

    Article  Google Scholar 

  42. Y.P. Ivanov, M. Vazquez, and O. Chubykalo-Fesenko, J. Phys. D: Appl. Phys. 46, 485001 (2013).

    Article  Google Scholar 

  43. L.H. Lewis and F. Jimenez-Villacorta, Metall. Mater. Trans. A 44A, 2 (2013).

    Article  Google Scholar 

  44. M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

    Article  Google Scholar 

  45. T. Burkert, L. Nordström, O. Eriksson, and O. Heinonen, Phys. Rev. Lett. 93, 027203 (2004).

    Article  Google Scholar 

  46. D. Goll, R. Loeffler, J. Herbst, R. Karimi, and G. Schneider, J. Phys. Condens. Matter 26, 064208 (2014).

    Article  Google Scholar 

  47. J.S. Chen, B.C. Lim, J.F. Hu, Y.K. Lim, B. Liu, and G.M. Chow, Appl. Phys. Lett. 90, 042508 (2007).

    Article  Google Scholar 

  48. M. Fallot, Compt. Rend. 199, 128 (1934).

    Google Scholar 

  49. G. Giannopoulos, Th Speliotis, W.F. Li, G. Hadjipanayis, and D. Niarchos, J. Magn. Magn. Mater. 325, 75 (2013).

    Article  Google Scholar 

  50. R. Victora and X. Shen, IEEE Trans. Magn. 41, 537 (2005).

    Article  Google Scholar 

  51. D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J. Fidler, Appl. Phys. Lett. 87, 012504 (2005).

    Article  Google Scholar 

  52. E. Fullerton, J.S. Jiang, M. Grimsditch, C.H. Sowers, and S.D. Bader, Phys. Rev. B 58, 18 (1998).

    Article  Google Scholar 

  53. D. Kim and J. Hong, Surf. Sci. 606, 1960 (2012).

    Article  Google Scholar 

  54. D. Kim, Ar Hashmi, and J. Hong, J. Kor. Phys. Soc. 62, 918 (2013).

    Article  Google Scholar 

  55. B. Wang, H. Oomiya, A. Arakawa, T. Hasegawa, and S. Ishio, J. Appl. Phys. 115, 133908 (2014).

    Article  Google Scholar 

  56. S. Kauffmann-Weiss, M.E. Gruner, A. Backen, L. Schultz, P. Entel, and S. Faehler, Phys. Rev. Lett. 107, 206105 (2011).

    Article  Google Scholar 

  57. G. Andersson, T. Burkert, P. Warnicke, M. Björck, B. Sanyal, C. Chacon, C. Zlotea, L. Nordström, P. Nord-blad, and O. Eriksson, Phys. Rev. Lett. 96, 37205 (2006).

    Article  Google Scholar 

  58. F. Luo, X.L. Fu, A. Winkelmann, and M. Przybylski, Appl. Phys. Lett. 91, 262512 (2007).

    Article  Google Scholar 

  59. F. Yildiz, M. Przybylski, X.-D. Ma, and J. Kirschner, Phys. Rev. B 80, 064415 (2009).

    Article  Google Scholar 

  60. L. Reichel, L. Schultz, and S. Fähler, J. Appl. Phys. 117, 17C712 (2015).

    Article  Google Scholar 

  61. X. Guo, X. Chen, Z. Altounian, and J.O. Strom-Olsen, Phys. Rev. B 46, 14578 (1992).

    Article  Google Scholar 

  62. N.V. RamaRao, A.M. Gabay, and G.C. Hadjipanayis, J. Phys. D 46, 062001 (2013).

    Article  Google Scholar 

  63. Y.-K. Hong, J. Park, O.N. Mryasov, S.-G. Kim, S. Kim, J. Lee, G.S. Abo, C.-J. Choi, and J. Lee, AIP Adv. 3, 052137 (2013).

    Article  Google Scholar 

  64. Y.B. Yang, X.G. Chen, S. Guo, A.R. Yan, Q.Z. Huang, M.M. Wu, D.F. Chen, Y.C. Yang, and J.B. Yang, J. Magn. Magn. Mater. 330, 106 (2013).

    Article  Google Scholar 

  65. R.R. Heikes, Phys. Rev. 99, 446 (1955).

    Article  Google Scholar 

  66. J.B. Yang, K. Kamaraju, W.B. Yelon, W.J. James, Q. Cai, and A. Bollero, Appl. Phys. Lett. 79, 1846 (2001).

    Article  Google Scholar 

  67. J. Cui, J.P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, T. Droubay, M.J. Kramer, N.A. Zarkevich, L.L. Wang, D.D. Johnson, M. Marinescu, I. Takeuchi, Q.Z. Huang, H. Wu, H. Reeve, N.V. Vuong, and J.P. Liu, J. Phys. 26, 064212 (2014).

    Google Scholar 

  68. C. Guillaud, J. Phys. Radium 12, 143 (1951).

    Article  Google Scholar 

  69. V. Ly, X. Wu, L. Smillie, T. Shoji, A. Kato, A. Manabe, and K. Suzuki, J. Alloys Compd. 615, S285 (2014).

    Article  Google Scholar 

  70. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by European Commission (REFREEPERMAG project) grant number GA-NMP3-SL-2012-280670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Niarchos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niarchos, D., Giannopoulos, G., Gjoka, M. et al. Toward Rare-Earth-Free Permanent Magnets: A Combinatorial Approach Exploiting the Possibilities of Modeling, Shape Anisotropy in Elongated Nanoparticles, and Combinatorial Thin-Film Approach. JOM 67, 1318–1328 (2015). https://doi.org/10.1007/s11837-015-1431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1431-7

Keywords

Navigation