Advertisement

JOM

, Volume 67, Issue 6, pp 1306–1317 | Cite as

Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials

  • P. Mcguiness
  • O. Akdogan
  • A. Asali
  • S. Bance
  • F. Bittner
  • J. M. D. Coey
  • N. M. Dempsey
  • J. Fidler
  • D. Givord
  • O. Gutfleisch
  • M. Katter
  • D. Le Roy
  • S. Sanvito
  • T. Schrefl
  • L. Schultz
  • C. Schwöbl
  • M. Soderžnik
  • S. Šturm
  • P. Tozman
  • K. Üstüner
  • M. Venkatesan
  • T. G. Woodcock
  • K. Žagar
  • S. Kobe
Article

Abstract

The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and Tb, two of the most critical raw materials identified by the European Commission. Overall, the ROMEO project has demonstrated that rapid progress can be achieved when experts in a specific area are brought together to focus on a particular challenge. With more than half a year of the ROMEO project remaining, further progress and additional breakthroughs can be expected.

Keywords

Permanent Magnet Heusler Alloy Supply Risk Sintered Magnet DyF3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The European Commission is acknowledged for the funding of this work under the Scheme: FP7-NMP-2012-SMALL-6: Small or medium-scale focused research projects. Work program topics addressed: NMP.2012.4.1-3 Development of advanced magnetic materials without, or with reduced use of, critical raw materials (Grant Agreement No. 309729).

References

  1. 1.
    European Commission, Critical Raw Materials for the EU (Brussels, Belgium: European Commission, 2010), http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/report-b_en.pdf.
  2. 2.
    European Commission, Defining Critical Raw Materials, http://ec.europa.eu/enterprise/policies/raw-materials/critical/index_en.htm.
  3. 3.
    Seventh Framework Programme, Replacement and Original Magnet Engineering Options, http://www.romeo-fp7.eu/.
  4. 4.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).zbMATHCrossRefGoogle Scholar
  5. 5.
    A. Asali, P. Toson, P. Blaha, and J. Fidler, IEEE Trans. Magn. 50, 4 (2014).CrossRefGoogle Scholar
  6. 6.
    L. Exl, S. Bance, F. Reichel, T. Schrefl, H.P. Stimming, and N.J. Mauser, J. Appl. Phys. 115, 17D118 (2014).CrossRefGoogle Scholar
  7. 7.
    T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, and J. Fidler, Handbook of Magnetism and Advanced Magnetic Materials (New York: Wiley, 2007).Google Scholar
  8. 8.
    T. Schrefl, J. Fidler, D. Suess, W. Scholz, and V. Tsiantos, Handbook of Advanced Magnetic Materials (New York: Springer, 2006), pp. 128–146.CrossRefGoogle Scholar
  9. 9.
  10. 10.
    H. Nakamura, K. Hirota, M. Shimao, T. Minowa, and M. Honshima, IEEE Trans. Magn. 41, 3844 (2005).CrossRefGoogle Scholar
  11. 11.
    D. Givord, M. Rossignol, and V.M. Barthem, J. Magn. Magn. Mater. 258, 1 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Curtarolo, G.L.W. Hart, M.B. Nardeli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
  13. 13.
    P.J. Webster, Contemp. Phys. 10, 559 (1969).CrossRefGoogle Scholar
  14. 14.
    M. Soderžnik, K. Žužek-Rožman, S. Kobe, and P. McGuiness, Intermetallic 23, 158 (2012).CrossRefGoogle Scholar
  15. 15.
    D. Sojer, I. Škulj, S. Kobe, J. Kovač, and P. Mcguiness, Mater. Technol. 47, 223 (2013).Google Scholar
  16. 16.
    T. Takeshita and R. Nakayama (Paper presented at the Proceedings of the 10th International Workshop on Rare-Earth Magnets and their Applications, 1989), p. 551.Google Scholar
  17. 17.
    J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton, J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
  18. 18.
    N.M. Dempsey, A. Walther, F. May, D. Givord, K. Khlopkov, and O. Gutfleish, Appl. Phys. Lett. 90, 092509 (2007).CrossRefGoogle Scholar
  19. 19.
    N.M. Dempsey, T.G. Woodcock, H. Sepehri-Amin, Y. Zhang, H. Kennedy, D. Givord, K. Hono, and O. Gutfleish, Acta Mater. 61, 4920 (2013).CrossRefGoogle Scholar
  20. 20.
    D. Le Roy, O. Akdogan, G. Ciuta, N.M. Dempsey, and D. Givord, J. Appl. Phys. 115, 17A738 (2014).CrossRefGoogle Scholar
  21. 21.
    O. Akdogan, A. Dobrynin, D. Le Roy, N.M. Dempsey, and D. Givord, J. Appl. Phys. 115, 17A764 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Tozman, M. Venkatesan, and J.M.D. Coey, IEEE Trans. Magn. 50, 11 (2014).CrossRefGoogle Scholar
  23. 23.
    Z. Samardžija, P. McGuiness, M. Soderžnik, S. Kobe, and M. Sagawa, Mater. Charact. 67, 27 (2012).CrossRefGoogle Scholar
  24. 24.
    G. Lucas, P. Burdet, M. Cantoni, and C. Hébert, Micron 52–53, 49 (2013).CrossRefGoogle Scholar
  25. 25.
    T. Iriyama (Paper presented at the Proceedings of the 23th International Workshop on Rare Earth Permanent Magnets & Their Applications, 2014).Google Scholar
  26. 26.
    M. Katter (Paper presented at the Proceedings of the 23th International Workshop on Rare Earth Permanent Magnets & Their Applications, 2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • P. Mcguiness
    • 1
  • O. Akdogan
    • 2
  • A. Asali
    • 3
  • S. Bance
    • 4
  • F. Bittner
    • 5
  • J. M. D. Coey
    • 6
  • N. M. Dempsey
    • 2
  • J. Fidler
    • 3
  • D. Givord
    • 2
  • O. Gutfleisch
    • 7
  • M. Katter
    • 8
  • D. Le Roy
    • 2
  • S. Sanvito
    • 6
  • T. Schrefl
    • 9
  • L. Schultz
    • 5
  • C. Schwöbl
    • 7
  • M. Soderžnik
    • 1
  • S. Šturm
    • 1
  • P. Tozman
    • 6
  • K. Üstüner
    • 8
  • M. Venkatesan
    • 6
  • T. G. Woodcock
    • 5
  • K. Žagar
    • 1
  • S. Kobe
    • 1
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Institut Néel, CNRS/UJFGrenobleFrance
  3. 3.Technical UniversityViennaAustria
  4. 4.St. Poelten University of Applied SciencesSankt PöltenAustria
  5. 5.IFW Leibniz Institute for Solid State and Materials ResearchDresdenGermany
  6. 6.School of Physics and CRANNTrinity CollegeDublinIreland
  7. 7.Technical UniversityDarmstadtGermany
  8. 8.Vacuumschmelze GmbHHanauGermany
  9. 9.Center for Integrated Sensor SystemsDanube UniversityKremsAustria

Personalised recommendations