Skip to main content

Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

Abstract

In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. F.H. Froes and H.B. Bomberger, JOM 37, 28 (1985).

    Article  Google Scholar 

  2. P.J. Bania, JOM 46, 16 (1994).

    Article  Google Scholar 

  3. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).

    Article  Google Scholar 

  4. K. Wang, Mater. Sci. Eng. A 213, 134 (1996).

    Article  Google Scholar 

  5. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng., A 243, 244 (1998).

    Article  Google Scholar 

  6. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).

    Article  Google Scholar 

  7. M. Takahashi, E. Kobayashi, H. Doi, T. Yoneyama, and H. Hamanaka, J. Jpn. Inst. Met. 64, 1120 (2000).

    Google Scholar 

  8. M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002).

    Article  Google Scholar 

  9. M. Niinomi, Sci. Technol. Adv. Mater. 4, 445 (2003).

    Article  Google Scholar 

  10. H.J. Rack and J.I. Qazi, Mater. Sci. Eng. C 26, 1269 (2006).

    Article  Google Scholar 

  11. M. Niinomi, J. Mech. Behav. Biomed. 1, 30 (2008).

    Article  Google Scholar 

  12. S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, and S.R. Seagle, Metall. Mater. Trans. A 18, 2015 (1987).

    Article  Google Scholar 

  13. I. Weiss and S.L. Semiatin, Mater. Sci. Eng. A 243, 46 (1998).

    Article  Google Scholar 

  14. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park, OH: ASM International, 2000), pp. 5–24.

    Google Scholar 

  15. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys (Materials Park, OH: ASM International, 1994), pp. 5–11.

    Google Scholar 

  16. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).

    Article  Google Scholar 

  17. D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  18. T. Grosdidier, C. Roubaud, M.-J. Philippe, and Y. Combres, Scr. Mater. 36, 21 (1997).

    Article  Google Scholar 

  19. T. Grosdidier, Y. Combres, E. Gautier, and M.-J. Philippe, Metall. Mater. Trans. A 31, 1095 (2000).

    Article  Google Scholar 

  20. S. Ankem and S. R. Seagle: Beta Titanium Alloys in the 1980’s, eds. R.R. Boyer and H.W. Rosenberg (Warrendale, PA: AIME, 1984), pp. 107–126.

  21. S. Ankem and C.A. Greene, Mater. Sci. Eng. A 263, 127 (1999).

    Article  Google Scholar 

  22. J.L. Murray, Bull. Alloy Phase Diagr. 2, 174 (1981).

    Article  Google Scholar 

  23. A.K. Aiyangar, B.W. Neuberger, P.G. Oberson, and S. Ankem, Metall. Mater. Trans. A 36, 637 (2005).

    Article  Google Scholar 

  24. P.G. Oberson and S. Ankem, Int. J. Plast. 25, 881 (2009).

    MATH  Article  Google Scholar 

  25. A. Jaworski Jr and S. Ankem, J. Mater. Eng. Perform. 14, 755 (2005).

    Article  Google Scholar 

  26. A. Jaworski Jr and S. Ankem, Metall. Mater. Trans. A 37, 2739 (2006).

    Article  Google Scholar 

  27. A. Jaworski Jr and S. Ankem, Metall. Mater. Trans. A 37, 2755 (2006).

    Article  Google Scholar 

  28. A. Ramesh and S. Ankem, Metall. Mater. Trans. A 33, 1137 (2002).

    Article  Google Scholar 

  29. R. Davis, H.M. Flower, and D.R.F. West, J. Mater. Sci. 14, 712 (1979).

    Google Scholar 

  30. E.S.K. Menon and R. Krishnan, J. Mater. Sci. 18, 365 (1983).

    Article  Google Scholar 

  31. D. Doraiswamy and S. Ankem, Acta Mater. 51, 1607 (2003).

    Article  Google Scholar 

  32. J.C. Williams, B.S. Hickman, and D.H. Leslie, Metall. Trans. 2, 477 (1971).

    Article  Google Scholar 

  33. J.M. Silcock, Acta Metall. 6, 481 (1958).

    Article  Google Scholar 

  34. D. de Fontaine, Metall. Trans. A 19, 169 (1988).

    Article  Google Scholar 

  35. D. de Fontaine, N.E. Paton, and J.C. Williams, Acta Metall. 19, 1153 (1971).

    Article  Google Scholar 

  36. A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 596 (2012).

    Article  Google Scholar 

  37. J.C. Williams, B.S. Hickman, and H.L. Marcus, Metall. Trans. 2, 1913 (1971).

    Google Scholar 

  38. E.G. Obbard, Y.L. Hao, R.J. Talling, S.J. Li, Y.W. Zhang, D. Dye, and R. Yang, Acta Mater. 59, 112 (2011).

    Article  Google Scholar 

  39. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Acta Mater. 59, 6208 (2011).

    Article  Google Scholar 

  40. S. Hanada and O. Izumi, Metall. Trans. A 18, 265 (1987).

    Article  Google Scholar 

  41. A. Ramesh and S. Ankem, Metall. Mater. Trans. A 30, 2249 (1999).

    Article  Google Scholar 

  42. Z. Wyatt and S. Ankem, J. Mater. Sci. 45, 5022 (2010).

    Article  Google Scholar 

  43. H.-S. Kim, S.-H. Lim, I.-D. Yeo, and W.-Y. Kim, Mater. Sci. Eng. A 449–451, 322 (2007).

    Article  Google Scholar 

  44. M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma, Acta Mater. 84, 124 (2015).

    Article  Google Scholar 

  45. W. Xu, K.B. Kim, J. Das, M. Calin, and J. Eckert, Scr. Mater. 54, 1943 (2006).

    Article  Google Scholar 

  46. S. Ishiyama, S. Hanada, and O. Izumi, ISIJ Int. 31, 807 (1991).

    Article  Google Scholar 

  47. A. Bhattacharjee, S. Bhargava, V.K. Varma, S.V. Kamat, and A.K. Gogia, Scr. Mater. 53, 195 (2005).

    Article  Google Scholar 

  48. A. Bhattacharjee, V.K. Varma, S.V. Kamat, A.K. Gogia, and S. Bhargava, Metall. Mater. Trans. A 37, 1423 (2006).

    Article  Google Scholar 

  49. L.C. Zhang, T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, J. Mater. Sci. 40, 2833 (2005).

    Article  Google Scholar 

  50. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Acta Mater. 54, 2419 (2006).

    Article  Google Scholar 

  51. O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y.V. Matviychuk, Mater. Sci. Eng. A 354, 121 (2003).

    Article  Google Scholar 

  52. S. Hanada, T. Yoshio, and O. Izumi, Trans. JIM 27, 496 (1986).

    Google Scholar 

  53. S. Hanada and O. Izumi, J. Mater. Sci. 21, 4131 (1986).

    Article  Google Scholar 

  54. M. Hida, E. Sukedai, C. Henmi, K. Sakaue, and H. Terauchi, Acta Metall. 30, 1471 (1982).

    Article  Google Scholar 

  55. R.G. Hennig, D.R. Trinkle, J. Bouchet, S.G. Srinivasan, R.C. Albers, and J.W. Wilkins, Nat. Mater. 4, 129 (2005).

    Article  Google Scholar 

  56. G.M. Rusakov, A.V. Litvinov, and V.S. Litvinov, Met. Sci. Heat Treat. 48, 244 (2006).

    Article  Google Scholar 

  57. P.G. Oberson and S. Ankem, Phys. Rev. Lett. 95, 165501 (2005).

    Article  Google Scholar 

  58. H. Xing and J. Sun, Appl. Phys. Lett. 93, 031908 (2008).

    Article  Google Scholar 

  59. M. Besse, P. Castany, and T. Gloriant, Acta Mater. 59, 5982 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prakash Kolli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolli, R.P., Joost, W.J. & Ankem, S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys. JOM 67, 1273–1280 (2015). https://doi.org/10.1007/s11837-015-1411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1411-y

Keywords

  • Martensite
  • Martensite Phase
  • Advanced Engineering Application
  • Eutectoid Point
  • Martensite Phase Form