Advertisement

JOM

, Volume 67, Issue 6, pp 1273–1280 | Cite as

Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

  • R. Prakash Kolli
  • William J. Joost
  • Sreeramamurthy Ankem
Article

Abstract

In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

Keywords

Martensite Martensite Phase Advanced Engineering Application Eutectoid Point Martensite Phase Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.H. Froes and H.B. Bomberger, JOM 37, 28 (1985).CrossRefGoogle Scholar
  2. 2.
    P.J. Bania, JOM 46, 16 (1994).CrossRefGoogle Scholar
  3. 3.
    R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).CrossRefGoogle Scholar
  4. 4.
    K. Wang, Mater. Sci. Eng. A 213, 134 (1996).CrossRefGoogle Scholar
  5. 5.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng., A 243, 244 (1998).CrossRefGoogle Scholar
  6. 6.
    M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Takahashi, E. Kobayashi, H. Doi, T. Yoneyama, and H. Hamanaka, J. Jpn. Inst. Met. 64, 1120 (2000).Google Scholar
  8. 8.
    M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Niinomi, Sci. Technol. Adv. Mater. 4, 445 (2003).CrossRefGoogle Scholar
  10. 10.
    H.J. Rack and J.I. Qazi, Mater. Sci. Eng. C 26, 1269 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Niinomi, J. Mech. Behav. Biomed. 1, 30 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, and S.R. Seagle, Metall. Mater. Trans. A 18, 2015 (1987).CrossRefGoogle Scholar
  13. 13.
    I. Weiss and S.L. Semiatin, Mater. Sci. Eng. A 243, 46 (1998).CrossRefGoogle Scholar
  14. 14.
    M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park, OH: ASM International, 2000), pp. 5–24.Google Scholar
  15. 15.
    G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys (Materials Park, OH: ASM International, 1994), pp. 5–11.Google Scholar
  16. 16.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater Sci. 54, 397 (2009).CrossRefGoogle Scholar
  17. 17.
    D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Grosdidier, C. Roubaud, M.-J. Philippe, and Y. Combres, Scr. Mater. 36, 21 (1997).CrossRefGoogle Scholar
  19. 19.
    T. Grosdidier, Y. Combres, E. Gautier, and M.-J. Philippe, Metall. Mater. Trans. A 31, 1095 (2000).CrossRefGoogle Scholar
  20. 20.
    S. Ankem and S. R. Seagle: Beta Titanium Alloys in the 1980’s, eds. R.R. Boyer and H.W. Rosenberg (Warrendale, PA: AIME, 1984), pp. 107–126.Google Scholar
  21. 21.
    S. Ankem and C.A. Greene, Mater. Sci. Eng. A 263, 127 (1999).CrossRefGoogle Scholar
  22. 22.
    J.L. Murray, Bull. Alloy Phase Diagr. 2, 174 (1981).CrossRefGoogle Scholar
  23. 23.
    A.K. Aiyangar, B.W. Neuberger, P.G. Oberson, and S. Ankem, Metall. Mater. Trans. A 36, 637 (2005).CrossRefGoogle Scholar
  24. 24.
    P.G. Oberson and S. Ankem, Int. J. Plast. 25, 881 (2009).zbMATHCrossRefGoogle Scholar
  25. 25.
    A. Jaworski Jr and S. Ankem, J. Mater. Eng. Perform. 14, 755 (2005).CrossRefGoogle Scholar
  26. 26.
    A. Jaworski Jr and S. Ankem, Metall. Mater. Trans. A 37, 2739 (2006).CrossRefGoogle Scholar
  27. 27.
    A. Jaworski Jr and S. Ankem, Metall. Mater. Trans. A 37, 2755 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Ramesh and S. Ankem, Metall. Mater. Trans. A 33, 1137 (2002).CrossRefGoogle Scholar
  29. 29.
    R. Davis, H.M. Flower, and D.R.F. West, J. Mater. Sci. 14, 712 (1979).Google Scholar
  30. 30.
    E.S.K. Menon and R. Krishnan, J. Mater. Sci. 18, 365 (1983).CrossRefGoogle Scholar
  31. 31.
    D. Doraiswamy and S. Ankem, Acta Mater. 51, 1607 (2003).CrossRefGoogle Scholar
  32. 32.
    J.C. Williams, B.S. Hickman, and D.H. Leslie, Metall. Trans. 2, 477 (1971).CrossRefGoogle Scholar
  33. 33.
    J.M. Silcock, Acta Metall. 6, 481 (1958).CrossRefGoogle Scholar
  34. 34.
    D. de Fontaine, Metall. Trans. A 19, 169 (1988).CrossRefGoogle Scholar
  35. 35.
    D. de Fontaine, N.E. Paton, and J.C. Williams, Acta Metall. 19, 1153 (1971).CrossRefGoogle Scholar
  36. 36.
    A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 596 (2012).CrossRefGoogle Scholar
  37. 37.
    J.C. Williams, B.S. Hickman, and H.L. Marcus, Metall. Trans. 2, 1913 (1971).Google Scholar
  38. 38.
    E.G. Obbard, Y.L. Hao, R.J. Talling, S.J. Li, Y.W. Zhang, D. Dye, and R. Yang, Acta Mater. 59, 112 (2011).CrossRefGoogle Scholar
  39. 39.
    M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Acta Mater. 59, 6208 (2011).CrossRefGoogle Scholar
  40. 40.
    S. Hanada and O. Izumi, Metall. Trans. A 18, 265 (1987).CrossRefGoogle Scholar
  41. 41.
    A. Ramesh and S. Ankem, Metall. Mater. Trans. A 30, 2249 (1999).CrossRefGoogle Scholar
  42. 42.
    Z. Wyatt and S. Ankem, J. Mater. Sci. 45, 5022 (2010).CrossRefGoogle Scholar
  43. 43.
    H.-S. Kim, S.-H. Lim, I.-D. Yeo, and W.-Y. Kim, Mater. Sci. Eng. A 449–451, 322 (2007).CrossRefGoogle Scholar
  44. 44.
    M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma, Acta Mater. 84, 124 (2015).CrossRefGoogle Scholar
  45. 45.
    W. Xu, K.B. Kim, J. Das, M. Calin, and J. Eckert, Scr. Mater. 54, 1943 (2006).CrossRefGoogle Scholar
  46. 46.
    S. Ishiyama, S. Hanada, and O. Izumi, ISIJ Int. 31, 807 (1991).CrossRefGoogle Scholar
  47. 47.
    A. Bhattacharjee, S. Bhargava, V.K. Varma, S.V. Kamat, and A.K. Gogia, Scr. Mater. 53, 195 (2005).CrossRefGoogle Scholar
  48. 48.
    A. Bhattacharjee, V.K. Varma, S.V. Kamat, A.K. Gogia, and S. Bhargava, Metall. Mater. Trans. A 37, 1423 (2006).CrossRefGoogle Scholar
  49. 49.
    L.C. Zhang, T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, J. Mater. Sci. 40, 2833 (2005).CrossRefGoogle Scholar
  50. 50.
    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Acta Mater. 54, 2419 (2006).CrossRefGoogle Scholar
  51. 51.
    O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y.V. Matviychuk, Mater. Sci. Eng. A 354, 121 (2003).CrossRefGoogle Scholar
  52. 52.
    S. Hanada, T. Yoshio, and O. Izumi, Trans. JIM 27, 496 (1986).Google Scholar
  53. 53.
    S. Hanada and O. Izumi, J. Mater. Sci. 21, 4131 (1986).CrossRefGoogle Scholar
  54. 54.
    M. Hida, E. Sukedai, C. Henmi, K. Sakaue, and H. Terauchi, Acta Metall. 30, 1471 (1982).CrossRefGoogle Scholar
  55. 55.
    R.G. Hennig, D.R. Trinkle, J. Bouchet, S.G. Srinivasan, R.C. Albers, and J.W. Wilkins, Nat. Mater. 4, 129 (2005).CrossRefGoogle Scholar
  56. 56.
    G.M. Rusakov, A.V. Litvinov, and V.S. Litvinov, Met. Sci. Heat Treat. 48, 244 (2006).CrossRefGoogle Scholar
  57. 57.
    P.G. Oberson and S. Ankem, Phys. Rev. Lett. 95, 165501 (2005).CrossRefGoogle Scholar
  58. 58.
    H. Xing and J. Sun, Appl. Phys. Lett. 93, 031908 (2008).CrossRefGoogle Scholar
  59. 59.
    M. Besse, P. Castany, and T. Gloriant, Acta Mater. 59, 5982 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations