Skip to main content

Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

Abstract

Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge, UK: Cambridge University Press, 2006).

    Book  Google Scholar 

  2. 2.

    M.R. Dorfman, M. Stapgens, J. Derano, and D. Sprorer, Sulzer Tech. Rev. 3, 8 (2013).

    Google Scholar 

  3. 3.

    E.P. Busso, H.E. Evans, Z.Q. Qian, and M.P. Taylor, Acta Mater. 58, 1242 (2010).

    Article  Google Scholar 

  4. 4.

    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Prog. Mater. Sci. 46, 505 (2001).

    Article  Google Scholar 

  5. 5.

    Ch. Eberl, X. Wang, D.S. Gianola, J.T.D. Nguyen, M.Y. He, A.G. Evans, and K.J. Hemker, J. Am. Ceram. Soc. 94, S120 (2011).

    Article  Google Scholar 

  6. 6.

    M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. Sohn, and V. Tolpygo, Surf. Coat. Technol. 120–121, 53 (1999).

    Article  Google Scholar 

  7. 7.

    M. Harvey, C. Courcier, V. Maurel, and L. Rémy, Surf. Coat. Tech. 203, 432 (2008).

    Article  Google Scholar 

  8. 8.

    A.M. Karlsson and A.G. Evans, Acta Mater. 49, 1793 (2001).

    Article  Google Scholar 

  9. 9.

    A.M. Karlsson, J.W. Hutchinson, and A.G. Evans, J. Mechan. Phys. Solids 50, 1565 (2002).

    Article  MATH  Google Scholar 

  10. 10.

    D.M. Lipkin and D.R. Clarke, Oxid. Met. 45, 267 (1996).

    Article  Google Scholar 

  11. 11.

    R.A. Miller, J. Eng. Gas Turbines Power 111, 301 (1989).

    Article  Google Scholar 

  12. 12.

    K.P. Wright, Mater. Sci. Eng. A 245, 191 (1998).

    Article  Google Scholar 

  13. 13.

    B. Baufeld, E. Tzimas, H. Müllejans, S. Peteves, J. Bressers, and W. Stamm, Mater. Sci. Eng. A 315, 231 (2001).

    Article  Google Scholar 

  14. 14.

    S. Bose, High Temperature Coatings (New York: Elsevier, 2007).

    Google Scholar 

  15. 15.

    M. Bartsch, G. Marci, K. Mull, and C. Sick, Adv. Eng. Mater. 1, 127 (1999).

    Article  Google Scholar 

  16. 16.

    B. Baufeld, M. Bartsch, S. Dalkilic, and M. Heinzelmann, Surf. Coat. Technol. 200, 1282 (2005).

    Article  Google Scholar 

  17. 17.

    M. Bartsch, B. Baufeld, S. Dalkilic, L. Chernova, and M. Heinzelmann, Int. J. Fatigue 30, 211 (2008).

    Article  MATH  Google Scholar 

  18. 18.

    M.T. Hernandez, D. Cojocaru, M. Bartsch, and A.M. Karlsson, Comput. Mater. Sci. 50, 2561 (2011).

    Article  Google Scholar 

  19. 19.

    M. Hernandez, A. Karlsson, and M. Bartsch, Surf. Coat. Tech. 203, 3549 (2009).

    Article  Google Scholar 

  20. 20.

    B.M. Clemens and J.A. Bain, MRS Bull. 17, 46 (1992).

    Article  Google Scholar 

  21. 21.

    M. Birkholz, Thin Film Analysis by X-Ray Scattering (New York: Wiley, 2006).

    Google Scholar 

  22. 22.

    U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, J. Appl. Crystallogr. 38, 1 (2005).

    Article  Google Scholar 

  23. 23.

    M. Bartsch, K. Mull, and Ch Sick, ASTM-STP1417, Fatigue and Fracture Mechanics: 33rd Volume (West Conshohocken, PA: ASTM International, 2002), pp. 147–160.

    Google Scholar 

  24. 24.

    S.F. Siddiqui, K. Knipe, A. Manero, C. Meid, J. Wischek, J. Okasinski, J. Almer, A.M. Karlsson, M. Bartsch, and S. Raghavan, Rev. Sci. Instrum. 84, 083904 (2013).

    Article  Google Scholar 

  25. 25.

    K. Knipe, A. Manero, S.F. Siddiqui, C. Meid, J. Wischek, J. Okasinski, J. Almer, A.M. Karlsson, M. Bartsch, and S. Raghavan, Nat. Commun. 5 (2014).

  26. 26.

    K. Knipe, A.C. Manero, II, S. Sofronsky, J. Okasinski, J. Almer, J. Wischek, C. Meid, A. Karlsson, M. Bartsch, and S. Raghavan, J. Eng. Gas Turbines Power 137, 082506-1 (2015).

    Article  Google Scholar 

  27. 27.

    C.A. Johnson, J.A. Ruud, R. Bruce, and D. Wortmann, Surf. Coat. Technol. 108–109, 80 (1998).

    Article  Google Scholar 

  28. 28.

    A. Peichl, T. Beck, and O. Vöhringer, Surf. Coat. Technol. 162, 113 (2003).

    Article  Google Scholar 

  29. 29.

    A. Manero, S. Sofronsky, K. Knipe, C. Lacdao, M. Smith, C. Meid, J. Wischek, J. Okasinksik, J. Almerk, A.M. Karlsson, M. Bartsch, and S. Raghavan (Paper presented at the 53rd AIAA Aerospace Sciences Meeting, January 2015).

Download references

Acknowledgements

This material is based on work supported by the Fulbright Academic Grant (Grant No. 34142765), National Science Foundation grants (Grant Numbers OISE 1157619, and CMMI 1125696), and by the German Science Foundation (DFG Grant No. SFB-TRR103, Project A3). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marion Bartsch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manero, A., Sofronsky, S., Knipe, K. et al. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions. JOM 67, 1528–1539 (2015). https://doi.org/10.1007/s11837-015-1399-3

Download citation

Keywords

  • Strain Gradient
  • Bond Coat
  • Thermally Grown Oxide
  • Internal Cool
  • Advance Photon Source