Skip to main content
Log in

Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10–40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical–chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young’s modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, and M.A. Zak, Environ. Sci. Technol. 34, 1576 (2000).

    Article  Google Scholar 

  2. H. Motz and J. Geiseler, Waste Manag. 21, 285 (2001).

    Article  Google Scholar 

  3. P. Ahmedzade and B. Sengoz, J. Hazard. Mater. 165, 300 (2009).

    Article  Google Scholar 

  4. P. Ahmedzade, M. Tigdemir, and S.F. Kalyoncuoglu, Construct. Build. Mater. 21, 626 (2007).

    Article  Google Scholar 

  5. I.M. Asi, H.Y. Qasrawi, and F.I. Shalabi, Can. J. Civil Eng. 34, 902 (2007).

    Article  Google Scholar 

  6. J.J. Emery, Slag Utilization in Pavement Construction (Extending Aggregate Resources (West Conshohocken, PA: ASTM International, 1982), pp. 95.

    Google Scholar 

  7. M. Kara, E. Gunay, B. Kavakli, S. Tayfur, K. Eren, and G. Karadag, Key Eng. Mater. 264–268, 2493 (2004).

    Article  Google Scholar 

  8. N.L. Nemerow, F.J. Agardy, and J.A. Salvato, Environmental Engineering: Environmental Health and Safety for Municipal Infrastructure, Land Use and Planning, and Industry, 6th ed. (New York: Wiely, 2009), p. 58.

    Book  Google Scholar 

  9. W. Shena, M. Zhoua, W. Mab, J. Hub, and Z. Caib, J. Hazard. Mater. 164, 99 (2009).

    Article  Google Scholar 

  10. P. Chaurand, J. Rose, V. Briois, L. Olivi, J.L. Hazemann, O. Proux, J. Domas, and J.Y. Bottero, J. Hazard. Mater. B139, 537 (2007).

    Article  Google Scholar 

  11. G. Wanga, Y. Wanga, and Z. Gaob, J. Hazard. Mater. 184, 555 (2010).

    Article  Google Scholar 

  12. S. Wu, Y. Xue, Q. Ye, and Y. Chen, Build. Environ. 42, 2580 (2007).

    Article  Google Scholar 

  13. S.I. Abu-Eishaha, A.S. El-Diebb, and M.S. Bedir, Const. Build. Mater. 34, 249 (2012).

    Article  Google Scholar 

  14. M. Frıas, Rojas and M.I. Sanchez de Rojas. Cement Concrete Res. 34, 1881 (2004).

    Article  Google Scholar 

  15. M. Luckman, V. Satish, and D. Venkateswaran, Cement Concrete Res. 39, 102 (2009).

    Article  Google Scholar 

  16. C. Shi and J. Qian, Resourc. Conserv. Recycl. 29, 195 (2000).

    Article  Google Scholar 

  17. P.E. Tsakiridis, G.D. Papadimitrou, S. Tsivilis, and C. Koroneos, J. Hazard. Mater. 152, 805 (2008).

    Article  Google Scholar 

  18. D. Venkateswaran, D. Sharma, L. Muhmood, and S. Witta, Global Slag Magazine, pp. 21 (2007).

  19. T. Zhang, F. Liu, and S. Liu, Adv. Cement Res. 20, 145 (2008).

    Article  Google Scholar 

  20. M. Arm, P. Suer, H. Arvidsson, and J.E. Lindqvist, Waste Manage. 31, 101 (2011).

    Article  Google Scholar 

  21. J.M. Manso, J.A. Polanco, M. Losanez, and J.J. Gonzalez, Cement Concrete Compos. 28, 528 (2006).

    Article  Google Scholar 

  22. C. Pellegrino and V. Gaddo, Cement Concrete Compos. 31, 663 (2009).

    Article  Google Scholar 

  23. P. Suer, J.E. Lindqvist, M. Arm, and P. Frogner-Kockum, Sci. Total Environ. 407, 5110 (2009).

    Article  Google Scholar 

  24. T. Zhang, Q. Yu, J. Wei, and J. Li, J. Therm. Anal. Calorim. 110, 633 (2012).

    Article  Google Scholar 

  25. D.R. Reinhart, Waste Manage. Res. 11, 257 (1993).

    Article  Google Scholar 

  26. M.A. Ozaki, H. Watanabe, and B. Wiebusch, Wat. Sci. Tech. 36, 267 (1997).

    Article  Google Scholar 

  27. M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, and M. Lidstrom, Larsson, and B. Bjorkman, Waste Manage. 27, 1335 (2007).

    Article  Google Scholar 

  28. M. Wahlstrom, Sci. Total Environ. 178, 95 (1996).

    Article  Google Scholar 

  29. M. Gelfi, G. Cornacchia, and R. Roberti (Paper presented at the Proceedings of the 6th Euroslag 2010 Conference, Madrid, Spain, 2010), pp. 157–169.

  30. J.F.P. Gomes and C.G. Pinto, Rev. Metal. 42, 409 (2006).

    Article  Google Scholar 

  31. Y. Lee and C.L. Nassarella, Metall. Mater. Trans. B 29B, 405 (1988).

    Google Scholar 

  32. E.R. Plunkett, Handbook of Industrial Toxicology (New York: Chemical Publishing Co., 1976), pp. 108–109.

    Google Scholar 

  33. J.-Z. Liang, J. Appl. Polym. Sci. 83, 1547 (2002).

    Article  Google Scholar 

  34. A.L.N. Da Silva, M.C.G. Rocha, M.A.R. Moraes, C.A.R. Valente, and F.M.B. Coutinho, Polym. Test. 21, 57 (2002).

    Article  Google Scholar 

  35. M.Y.A. Fuad, H. Hani., R. Zarina, Z.A. Mohd Ishak, and A. Hassan, eXPRESS Polym. Lett. 4 (10), 611 (2010), 611–620.

  36. L.E. Nielsen, Mechanical Properties of Polymers and Composites (New York: Marcel Dekker, 1974).

    Google Scholar 

  37. R. Roberti, Italian patent BS2008A000143 (2008).

  38. CEN, prEN 12457-2, Characterization of Waste-Leaching-Compliance Test of Leaching of Granular Waste Material and Sludges–Part 2: One-Stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials with Particle Size Below 4 mm (With or Without Particle Reduction), (2002a).

  39. ISO 527-1:2012, Plastics—Determination of Tensile Properties—Part 1: General Principles (2012).

  40. ISO 179-2:1997, Plastics—Determination of Charpy Impact Properties—Part 2: Instrumented Impact Test (1997).

  41. K.E. Daugherty, B. Saad, C. Weirich, and A. Eberendu, Silic. Indust. 4, 107 (1983).

    Google Scholar 

  42. L. Nicolais and M. Narkis, Polym. Eng. Sci. 11, 194 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ing. Massimo Svanera and ASO Siderurgica srl for their collaboration in carrying out the experiments. Also, the contributions of Valentina Ferrari, Isabella Peroni, and Gloria Spagnoli in the experimental testing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cornacchia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornacchia, G., Agnelli, S., Gelfi, M. et al. Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites. JOM 67, 1370–1378 (2015). https://doi.org/10.1007/s11837-015-1396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1396-6

Keywords

Navigation