Skip to main content
Log in

Sol–Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol–gel–derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15–20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol–gel HA-coated Mg-3Zn alloy in orthopedic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Acta Biomater. 8, 1230 (2012).

    Article  Google Scholar 

  2. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  3. P.E. DeGarmo, Materials and Processes in Manufacturing, 5th ed. (New York: Collin Macmillan, 1979).

    Google Scholar 

  4. L. Gibson and M. Ashby, Cellular Solids. Structure and Properties, 2nd ed. (Sydney: Pergamon Press, 1988), pp. 1–41.

    MATH  Google Scholar 

  5. J.W. Choi, Y.M. Kong, H.E. Kim, and I.S. Lee, J. Am. Ceram. Soc. 81, 1743 (1998).

    Article  Google Scholar 

  6. J. Nagels, M. Stokdijk, and P.M. Rozing, J. Shoulder Elbow Surg. 12, 35 (2003).

    Article  Google Scholar 

  7. G. Song, Corros. Sci. 49, 1696 (2007).

    Article  Google Scholar 

  8. Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomaterials 29, 1329 (2008).

    Article  Google Scholar 

  9. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A.M. Lindenberg, C.J. Wirth, and H. Windhagen, Biomaterials 26, 3557 (2005).

    Article  Google Scholar 

  10. B.A. Shaw, Corrosion: Fundamentals, Testing and Protection, Vol. 13A, ed. D. Stephen (London: ASM International, 2003), p. 692.

    Google Scholar 

  11. S.S.A. El-Rahman, Pharmacol. Res. 47, 189–194 (2003).

    Article  Google Scholar 

  12. W. Yang, P. Zhang, J. Liu, and Y. Xue, J. Rare Earths 24, 369 (2006).

    Article  Google Scholar 

  13. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A.M. Lindenberg, C.J. Wirth, and H. Windhagen, Biomaterials 26, 3557 (2005).

    Article  Google Scholar 

  14. H. Tapiero and K.D. Tew, Biomed. Pharmacother. 57, 399 (2003).

    Article  Google Scholar 

  15. H. Okamoto, J. Phase Equilib. Diffus. 15, 129 (1994).

    Article  Google Scholar 

  16. H. Haferkamp, F.W. Bach, V. Kaese, K. Möhwald, M. Niemeyer, and H. Schreckenberger, Magnesium Alloys and Technology, ed. K.U. Kainer (Weinheim: Wiley, 2003), pp. 226–227.

    Chapter  Google Scholar 

  17. A.F. Lotfabadi, M.H. Idris, A. Ourdjini, M.R.A. Kadir, S. Farahany, and H.R. Baksheshi-rad, Bull. Mater. Sci. 36, 1103 (2013).

    Article  Google Scholar 

  18. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Article  Google Scholar 

  19. M. Bohner and J. Lemaitre, Biomaterials 30, 2175 (2009).

    Article  Google Scholar 

  20. J. Currey, Nature 414, 699 (2001).

    Article  Google Scholar 

  21. P. Ducheyne and Q. Qiu, Biomaterials 20, 2287 (1999).

    Article  Google Scholar 

  22. M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, and S.K. Sadrnezhaad, J. Alloy Compd. 471, 180 (2009).

    Article  Google Scholar 

  23. S.V. Dorozhkin, Acta Biomater. 10, 2919 (2014).

    Article  Google Scholar 

  24. L.I. KaiKai, W. Bing, Y. Biao, and L.U. Wei, Chin. Sci. Bull. 57, 2319 (2012).

    Article  Google Scholar 

  25. M. Tomozawa and S. Hiromotoi, Mater. Trans. 51, 2080 (2010).

    Article  Google Scholar 

  26. T. Onoki, S. Yamamoto, H. Onodera, and A. Nakahira, Mater. Sci. Eng. C 31, 499 (2011).

    Article  Google Scholar 

  27. Z. Zhang, G. Zhang, and M. Wei, J. Biomed. Mater. Res. B 89, 408 (2008).

    Google Scholar 

  28. S. Keim, J.G. Brunner, B. Fabry, and S. Virtanen, J. Biomed. Mater. Res. B 96B, 84 (2011).

    Article  Google Scholar 

  29. M. Razavi, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, Surf. Eng. 30, 545 (2014).

    Article  Google Scholar 

  30. Y.W. Song, D.Y. Shan, and E.H. Han, Mater. Lett. 62, 3276 (2008).

    Article  Google Scholar 

  31. M. Razavia, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, Mater. Sci. Eng. C 48, 21 (2015).

    Article  Google Scholar 

  32. H. Tang, T.Z. Xin, Y. Luo, and F.P. Wang, Mater. Sci. Tech. 29, 547 (2013).

    Article  Google Scholar 

  33. R. Rojaee, M. Fathi, and K. Raeissi, Mater. Sci. Eng. C 33, 3817 (2013).

    Article  Google Scholar 

  34. A. Roy, S.S. Singh, M.K. Datta, B. Lee, J. Ohodnicki, and P.N. Kumta, Mater. Sci. Eng. B 176, 1679 (2011).

    Article  Google Scholar 

  35. S. Sonmez, B. Aksakal, and B. Dikici, J. Alloy Compd. 596, 125 (2014).

    Article  Google Scholar 

  36. E. Milella, F. Cosentino, A. Licciulli, and C. Massaro, Biomaterials 22, 1425 (2001).

    Article  Google Scholar 

  37. D.M. Liu, Q.Z. Yang, T. Troczynski, and W.J.J. Tseng, Biomaterials 23, 1679 (2002).

    Article  Google Scholar 

  38. S. Sonmez, B. Aksakal, and B. Dikici, J. Alloy Compd. 596, 125 (2014).

    Article  Google Scholar 

  39. M.H. Fathi and A. Hanifi, Adv. Appl. Ceram. 108, 363 (2009).

    Article  Google Scholar 

  40. R. Jenkins and R.L. Snyder, Introduction to X-ray Powder Diffractometry (New York: Wiley, 1996).

    Book  Google Scholar 

  41. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  42. S. Shadanbaz and G.J. Dias, Acta Biomater. 8, 20 (2012).

    Article  Google Scholar 

  43. S. Neralla, D. Kumar, S. Yarmolenko, and J. Sankar, Compos. B 35, 157 (2004).

    Article  Google Scholar 

  44. J.L. Arias, M.B. Mayor, J. Pou, Y. Leng, B. Leon, and M. Perez-Amor, Biomaterials 24, 3403 (2003).

    Article  Google Scholar 

  45. L. Cleries, J.M. Fernandez-Pradas, and J.L. Morenza, Biomaterials 21, 1861 (2000).

    Article  Google Scholar 

  46. A.J. Whitehead and T.F. Page, Solid Films 220, 277 (1992).

    Article  Google Scholar 

  47. G.R. Anstis, P. Chantiklul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Article  Google Scholar 

  48. L.L. Hench and J. Wilson, Advanced Series in Ceramics, Vol. 1, ed. L.L. Hench and J. Wilson (Singapore: World Scientific, 1993), pp. 1–24.

    Google Scholar 

  49. H.M. Fathi and A.D. Mohammadi, Mater. Sci. Eng. A 474, 128 (2008).

    Article  Google Scholar 

  50. R. Willumeit, A. Möhring, and F. Feyerabend, Int. J. Mol. Sci. 15, 7639 (2014).

    Article  Google Scholar 

  51. J.D. de Bruijn, C.A. van Blitterswijk, and J.E. Davies, J. Biomed. Mater. Res. 29, 89 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the laboratory stuff at Metallurgical and Materials Engineering Department and Centre of Nano Technology, Indian Institute of Technology, Roorkee for their facilities. The authors would like to thank Mr. Khelendra Agarwal for his support during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debrupa Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Manoj Kumar, R., Kuntal, K.K. et al. Sol–Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application. JOM 67, 702–712 (2015). https://doi.org/10.1007/s11837-015-1364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1364-1

Keywords

Navigation