, Volume 67, Issue 4, pp 754–766 | Cite as

Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

  • Deniz T. Yucesoy
  • Marketa Hnilova
  • Kyle Boone
  • Paul M. Arnold
  • Malcolm L. Snead
  • Candan TamerlerEmail author


Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.


Minimum Inhibition Concentration Bacterial Adhesion Titanium Substrate Lower Energy Structure Cell Surface Display 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from National Institute of Health (NIH)—Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Musculoskeletal Tissue Engineering Section 7R21AR062249-03 and University of Kansas New Faculty General Research Fund (NFGRF) as well as National Institute of Dental and Craniofacial Research Grant DE13045.


  1. 1.
    S. Bauer, P. Schmuki, K. von der Mark, and J. Park, Prog. Mater. Sci. 58, 261 (2013).CrossRefGoogle Scholar
  2. 2.
    D. Puleo and A. Nanci, Biomaterials 20, 2311 (1999).CrossRefGoogle Scholar
  3. 3.
    M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Prog. Mater. Sci. 54, 397 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, Dent. Mater. 23, 844 (2007).CrossRefGoogle Scholar
  5. 5.
    P.H. Pennekamp, J. Gessmann, O. Diedrich, B. Burian, M.A. Wimmer, V.M. Frauchiger, and C.N. Kraft, J. Orthop. Res. 24, 531 (2006).CrossRefGoogle Scholar
  6. 6.
    J. Costerton, P.S. Stewart, and E. Greenberg, Science 284, 1318 (1999).CrossRefGoogle Scholar
  7. 7.
    R.A. Weinstein and R.O. Darouiche, Clin. Infect. Dis. 33, 1567 (2001).CrossRefGoogle Scholar
  8. 8.
    I. Uçkay, P. Hoffmeyer, D. Lew, and D. Pittet, J. Hosp. Infect. 84, 5 (2013).CrossRefGoogle Scholar
  9. 9.
    V. Antoci Jr, C.S. Adams, J. Parvizi, H.M. Davidson, R.J. Composto, T.A. Freeman, E. Wickstrom, P. Ducheyne, D. Jungkind, and I.M. Shapiro, Biomaterials 29, 4684 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Kazemzadeh-Narbat, J. Kindrachuk, K. Duan, H. Jenssen, R.E. Hancock, and R. Wang, Biomaterials 31, 9519 (2010).CrossRefGoogle Scholar
  11. 11.
    C.R. Rathbone, J.D. Cross, K.V. Brown, C.K. Murray, and J.C. Wenke, J. Orthop. Res. 29, 1070 (2011).CrossRefGoogle Scholar
  12. 12.
    E.M. Hetrick and M.H. Schoenfisch, Chem. Soc. Rev. 35, 780 (2006).CrossRefGoogle Scholar
  13. 13.
    D. Campoccia, L. Montanaro, P. Speziale, and C.R. Arciola, Biomaterials 31, 6363 (2010).CrossRefGoogle Scholar
  14. 14.
    G.M. Harbers, K. Emoto, C. Greef, S.W. Metzger, H.N. Woodward, J.J. Mascali, D.W. Grainger, and M.J. Lochhead, Chem. Mater. 19, 4405 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Shimotoyodome, T. Koudate, H. Kobayashi, J. Nakamura, I. Tokimitsu, T. Hase, T. Inoue, T. Matsukubo, and Y. Takaesu, Antimicrob. Agents Chemother. 51, 3634 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. An, G. Stuart, S. McDowell, S. McDaniel, Q. Kang, and R. Friedman, J. Orthop. Res. 14, 846 (1996).CrossRefGoogle Scholar
  17. 17.
    B. Jose, V. Antoci Jr, A.R. Zeiger, E. Wickstrom, and N.J. Hickok, Chem. Biol. 12, 1041 (2005).CrossRefGoogle Scholar
  18. 18.
    J. Price, A. Tencer, D. Arm, and G. Bohach, J. Biomed. Mater. Res. 30, 281 (1996).CrossRefGoogle Scholar
  19. 19.
    A. Russell, U. Tattawasart, J.-Y. Maillard, and J. Furr, Antimicrob. Agents Chemother. 42, 2151 (1998).Google Scholar
  20. 20.
    D.A. Wininger and R.J. Fass, Antimicrob. Agents Chemother. 40, 2675 (1996).Google Scholar
  21. 21.
    L. Harris, L. Mead, E. Müller-Oberländer, and R. Richards, J. Biomed. Mater. Res. A 78, 50 (2006).CrossRefGoogle Scholar
  22. 22.
    I. Banerjee, R.C. Pangule, and R.S. Kane, Adv. Mater. 23, 690 (2011).CrossRefGoogle Scholar
  23. 23.
    L. Zhao, P.K. Chu, Y. Zhang, and Z. Wu, J. Biomed. Mater. Res. B Appl. Biomater. 91, 470 (2009).CrossRefGoogle Scholar
  24. 24.
    B. Gottenbos, H.C. van der Mei, F. Klatter, P. Nieuwenhuis, and H.J. Busscher, Biomaterials 23, 1417 (2002).CrossRefGoogle Scholar
  25. 25.
    M. Mrksich and G.M. Whitesides, Annu. Rev. Biophys. 25, 55 (1996).CrossRefGoogle Scholar
  26. 26.
    M. Mohorčič, I. Jerman, M. Zorko, L. Butinar, B. Orel, R. Jerala, and J. Friedrich, J. Mater. Sci. Mater. Med. 21, 2775 (2010).CrossRefGoogle Scholar
  27. 27.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Chem. Rev. 105, 1103 (2005).CrossRefGoogle Scholar
  28. 28.
    L.G. Harris and R.G. Richards, Injury 37, S3 (2006).CrossRefGoogle Scholar
  29. 29.
    K.A. Brogden, Nat. Rev. Microbiol. 3, 238 (2005).CrossRefGoogle Scholar
  30. 30.
    A. Giuliani, G. Pirri, and S.F. Nicoletto, Cent. Eur. J. Biol. 2, 1 (2007).CrossRefGoogle Scholar
  31. 31.
    M. Zasloff, Nature 415, 389 (2002).CrossRefGoogle Scholar
  32. 32.
    K. Reddy, R. Yedery, and C. Aranha, Int. J. Antimicrob. Agents 24, 536 (2004).CrossRefGoogle Scholar
  33. 33.
    M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Crit. Rev. Biotechnol. 32, 143 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Jenssen, P. Hamill, and R.E. Hancock, Clin. Microbiol. Rev. 19, 491 (2006).CrossRefGoogle Scholar
  35. 35.
    A.B. Ingham and R.J. Moore, Biotechnol. Appl. Biochem. 47, 1 (2007).CrossRefGoogle Scholar
  36. 36.
    K. Hilpert, M.R. Elliott, R. Volkmer-Engert, P. Henklein, O. Donini, Q. Zhou, D.F. Winkler, and R.E. Hancock, Chem. Biol. 13, 1101 (2006).CrossRefGoogle Scholar
  37. 37.
    C.D. Fjell, H. Jenssen, K. Hilpert, W.A. Cheung, N. Pante, R.E. Hancock, and A. Cherkasov, J. Med. Chem. 52, 2006 (2009).CrossRefGoogle Scholar
  38. 38.
    Z. Jiang, A.I. Vasil, J.D. Hale, R.E. Hancock, M.L. Vasil, and R.S. Hodges, J. Pept. Sci. 90, 369 (2008).CrossRefGoogle Scholar
  39. 39.
    M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, and F. Baneyx, Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
  40. 40.
    D. Campoccia, L. Montanaro, and C.R. Arciola, Biomaterials 34, 8533 (2013).CrossRefGoogle Scholar
  41. 41.
    P.H. Kwakman, A.A. te Velde, C.M. Vandenbroucke-Grauls, S.J. Van Deventer, and S.A. Zaat, Antimicrob. Agents Chemother. 50, 3977 (2006).CrossRefGoogle Scholar
  42. 42.
    O. Etienne, C. Picart, C. Taddei, Y. Haikel, J. Dimarcq, P. Schaaf, J. Voegel, J. Ogier, and C. Egles, Antimicrob. Agents Chemother. 48, 3662 (2004).CrossRefGoogle Scholar
  43. 43.
    P. Appendini and J. Hotchkiss, J. Appl. Polym. Sci. 81, 609 (2001).CrossRefGoogle Scholar
  44. 44.
    Z. Yan, M.L. Snead, and C. Tamerler, Nanomedicine 11, 431 (2015).CrossRefGoogle Scholar
  45. 45.
    S.S. Socransky and A.D. Haffajee, Periodontology 2000 28, 12 (2002).CrossRefGoogle Scholar
  46. 46.
    D. Campoccia, L. Montanaro, and C.R. Arciola, Biomaterials 27, 2331 (2006).CrossRefGoogle Scholar
  47. 47.
    F. Costa, I.F. Carvalho, R.C. Montelaro, P. Gomes, and M.C.L. Martins, Acta Biomater. 7, 1431 (2011).CrossRefGoogle Scholar
  48. 48.
    S.R. Meyers, X. Khoo, X. Huang, E.B. Walsh, M.W. Grinstaff, and D.J. Kenan, Biomaterials 30, 277 (2009).CrossRefGoogle Scholar
  49. 49.
    M. Yoshinari, T. Kato, K. Matsuzaka, T. Hayakawa, and K. Shiba, Biofouling 26, 103 (2010).CrossRefGoogle Scholar
  50. 50.
    H. Yazici, H. Fong, B. Wilson, E. Oren, F. Amos, H. Zhang, J. Evans, M. Snead, M. Sarikaya, and C. Tamerler, Acta Biomater. 9, 5341 (2013).CrossRefGoogle Scholar
  51. 51.
    E.E. Oren, C. Tamerler, D. Sahin, M. Hnilova, U.O.S. Seker, M. Sarikaya, and R. Samudrala, Bioinformatics 23, 2816 (2007).CrossRefGoogle Scholar
  52. 52.
    Z. Lu, K.S. Murray, V. Van Cleave, E.R. LaVallie, M.L. Stahl, and J.M. McCoy, Nat. Biotechnol. 13, 366 (1995).CrossRefGoogle Scholar
  53. 53.
    C. Tamerler, D. Khatayevich, M. Gungormus, T. Kacar, E.E. Oren, M. Hnilova, and M. Sarikaya, J. Pept. Sci. 94, 78 (2010).CrossRefGoogle Scholar
  54. 54.
    C. Tamerler and M. Sarikaya, Acta Biomater. 3, 289 (2007).CrossRefGoogle Scholar
  55. 55.
    U.O.S. Seker, B. Wilson, S. Dincer, I.W. Kim, E.E. Oren, J.S. Evans, C. Tamerler, and M. Sarikaya, Langmuir 23, 7895 (2007).CrossRefGoogle Scholar
  56. 56.
    C.D. Fjell, H. Jenssen, W.A. Cheung, R.E. Hancock, and A. Cherkasov, Chem. Biol. Drug Des. 77, 48 (2011).CrossRefGoogle Scholar
  57. 57.
    S. Chaudhury, S. Lyskov, and J.J. Gray, Bioinformatics 26, 689 (2010).CrossRefGoogle Scholar
  58. 58.
    K.T. Simons, C. Kooperberg, E. Huang, and D. Baker, J. Mol. Biol. 268, 209 (1997).CrossRefGoogle Scholar
  59. 59.
    P. Bradley, K.M. Misura, and D. Baker, Science 309, 1868 (2005).CrossRefGoogle Scholar
  60. 60.
    W. Kabsch and C. Sander, Biopolymers 22, 2577 (1983).CrossRefGoogle Scholar
  61. 61.
    J.W. Grzymala-Busse and W. Rzasa, Fund. Inform. 100, 99 (2010).zbMATHMathSciNetGoogle Scholar
  62. 62.
    N.E. Shepherd, H.N. Hoang, G. Abbenante, and D.P. Fairlie, J. Am. Chem. Soc. 131, 15877 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Deniz T. Yucesoy
    • 1
  • Marketa Hnilova
    • 1
  • Kyle Boone
    • 2
  • Paul M. Arnold
    • 3
  • Malcolm L. Snead
    • 4
  • Candan Tamerler
    • 5
    Email author
  1. 1.Department of Materials Science and Engineering, GEMSEC, Genetically Engineered Materials Science and Engineering CenterUniversity of WashingtonSeattleUSA
  2. 2.Bioengineering Program and Bioengineering Research CenterUniversity of KansasLawrenceUSA
  3. 3.Department of Neurosurgery, School of Medicine, Spinal Cord Injury CenterUniversity of KansasKansas CityUSA
  4. 4.Ostrow School of Dentistry of USC, Center for Craniofacial Molecular BiologyUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Department of Mechanical Engineering & Bioengineering Research CenterUniversity of KansasLawrenceUSA

Personalised recommendations