Skip to main content
Log in

Nanotopography and Surface Stress Analysis of Ti6Al4V Bioimplant: An Alternative Design for Stability

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical stability of biomedical Ti6Al4V rods with vertically aligned nanotubes structure formed on their surface has yet to be fully tested during insertion into the bone. The surface of rods impacted during insertion into a bone makes shear contact with bone, generating an interfacial stress. This stress plays an important role in osseointegration and may contribute to loosening between the bone and the implant during surgery. In the current study, the mechanical stability of various Ti6Al4V surfaces, including machined (M), rough (R), machined-anodized (MA), and rough-anodized (RA) surfaces, were tested and fully analyzed during insertion and pullout test into a simulant bone with densities 15 and 20 pounds per cubic foot (pcf). Our initial results from the field emission scanning electron microscopy images taken before and after insertion reveal that titania nanotubes remained stable and maintained their structural integrity during the insertion and pullout Instron test. Furthermore, from the interfacial stress calculation during the insertion, it was observed that compared with nonanodized rods, a higher force was required to insert the anodized rods. The interfacial stress generated during the insertion of anodized rods was 1.03 ± 0.11 MPa for MA and 1.10 ± 0.36 MPa for RA, which is significantly higher (p < 0.05) than nonanodized rods with 0.36 ± 0.07 MPa for M and 0.36 ± 0.08 MPa for R in simulant bone with density of 15 pcf. Similar behavior was also observed in 20 pcf simulant bone. Energy dissipated during anodized rod insertion (i.e., MA = 1.3 ± 0.04 Nm and RA = 1.23 ± 0.24 Nm) was not significantly different than nonanodized rod insertion (i.e., M = 0.9 ± 0.05 Nm and R = 1.04 ± 0.04 Nm) into 15 pcf simulant bone. The high stress during insertion of anodized rods suggests that the nanotubes on the surface can cause gripping and high friction on the radial side, resisting the counter motion of the bone. The latter may play a beneficial role in preventing micromotion between the bone and implant and therefore reducing the chance of fretting/fatigue corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inpatient Surgery, in Health, Office of Information Services, 2 (2010).

  2. Joint Revision Surgery—When Do I Need It? OrthoInfo (2007), http://orthoinfo.aaos.org/topic.cfm?topic=A00510.

  3. A. Tabassum, G.J. Meijer, X.F. Walboomers, and J.A. Jansen, Clin. Oral Impl. Res. 25, 487 (2014).

    Article  Google Scholar 

  4. F. Javed, H.B. Ahmed, R. Crespi, and G.E. Romanos, Intervent. Med. Appl. Sci. 5, 6 (2013).

    Google Scholar 

  5. P. Rao and A. Gill, J. Dental Impl. 2, 103 (2012).

    Article  Google Scholar 

  6. D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens, Mater. Sci. Eng. 74, 377 (2013).

    Article  Google Scholar 

  7. S. Oh, C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Finones, and S. Jin, J. Biomed. Mater. Res. Part A 78A, 97 (2006).

    Article  Google Scholar 

  8. G. Balasundaram, C. Yao, and T.J. Webster, J. Biomed. Mater. Res. Part A 84A, 447 (2008).

    Article  Google Scholar 

  9. K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, and S. Jin, Acta Biomater. 5, 3215 (2009).

    Article  Google Scholar 

  10. A. Pozio, A. Palmieri, A. Girardi, F. Cura, and F. Carinci, Dental Res. J. 9, 5 (2012).

    Google Scholar 

  11. M.S. Aw, K.A. Khalid, K. Gulati, G.J. Atkins, P. Pivonka, D.M. Findlay, and D. Losic, Int. J. Nanomed. 7, 10 (2012).

    Google Scholar 

  12. A. Hamlekhan, A. Butt, S. Patel, D. Royhman, C. Takoudis, C. Sukotjo, J. Yuan, G. Jursich, M.T. Mathew, W. Hendrickson, A. Virdi, and T. Shokuhfar, Plos One 9, 10 (2014).

    Article  Google Scholar 

  13. S.B. Patel, A. Hamlekhan, D. Royhman, A. Butt, J. Yuan, T. Shokuhfar, C. Sukotjo, M.T. Mathew, G. Jursich, and C.G. Takoudis, J. Mater. Chem. B 2, 3597 (2014).

    Article  Google Scholar 

  14. W. Yu, J. Qui, L. Xu, and F. Zhang, Biomed. Mater. 4, 7 (2009).

    Article  Google Scholar 

  15. J.C. Grotberg, Modifying Ti6Al4V Implant Surfaces: Cell Responses and Corrosion Resistance of Annealed Titania Nanotubes.Bioengineering (Chicago: University of Illinois at Chicago, 2014), p. 115.

    Google Scholar 

  16. H. Hirakata, K. Ito, A. Yonezu, H. Tsuchiya, S. Fujimoto, and K. Minoshima, Acta Mater. 58, 4956 (2010).

    Article  Google Scholar 

  17. G.A. Crawford, N. Chawla, and J.E. Houston, J. Mechan. Behav. Biomed. Mater. 2, 580 (2009).

    Article  Google Scholar 

  18. G.A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Acta Biomater. 3, 359 (2007).

    Article  Google Scholar 

  19. C.R. Friedrich, M.K.T. Moser, C. Sujotjo, and T. Shokuhfar, Surf. Innovat. 1, 9 (2013).

    Google Scholar 

  20. T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, and C. Friedrich, ACS Nano 3, 3098 (2009).

    Article  Google Scholar 

  21. C.N. Elias, F.A. Rocha, A.L. Nascimento, P.G. Coelho, and J. Mechan, Behav. Biomed. Mater. 16, 169 (2012).

    Article  Google Scholar 

  22. S. Patel, A. Butt, Q. Tao, A.J.I. Rossero, D. Royhman, C. Sukotjo, and C.G. Takoudis, Coll. Surf. B 115, 280 (2014).

    Article  Google Scholar 

  23. D.H. Shin, T. Shokuhfar, C.K. Choi, S.H. Le, and C. Friedrich, Nanotechnology 22, 315704 (2011).

    Article  Google Scholar 

  24. S. Hosseini, Biomedical Engineering-Technical Applications in Medicine (Rijeka: Intech Publications, 2012), p. 18.

    Google Scholar 

  25. P.A. Dearnley, K.L. Dahm, and H. Çimenoğlu, Wear 256, 469 (2004).

    Article  Google Scholar 

  26. T. Cheng, Y. Chen, and X. Nie, Thin Solid Films 549, 123 (2013).

    Article  Google Scholar 

  27. A. Tabassum, F. Walboomers, J.G. Wolke, G.J. Meijer, and J.A. Jansen, Clin. Impl. Dent. Related Res. 13, 269 (2011).

    Article  Google Scholar 

  28. A. Tabassum, F. Walboomers, J.G. Wolke, G.J. Meijer, and J.A. Jansen, Clin. Oral Implants Res. 20, 327 (2009).

    Article  Google Scholar 

  29. M.V. dos Santos, C.N. Elias, and J.H. Cavalcanti Lima, Clin. Impl. Dent. Related Res. 13, 215 (2011).

    Article  Google Scholar 

  30. F. Javed and G.E. Romanos, J. Dent. 38, 612 (2010).

    Article  Google Scholar 

  31. L.H.B. Walschot, Orthopaedics (Nijmegen: Radboud University, 2014), p. 208.

    Google Scholar 

  32. S.J. Ferguson, U. Weber, B. von Rechenberg, and J. Mayer, J. Biomed. Mater. Res. B 77B, 13 (2005).

    Article  Google Scholar 

  33. L.R. VanSchoiack, J.C. Wu, C.G. Sheets, and J.C. Earthman, Mater. Sci. Eng. C 26, 1307 (2006).

    Article  Google Scholar 

  34. R.I.K. Huiskes, H. Weinans, and B.V. Rietbergen, Clin. Orthopaed. Related Res. 274, 124 (1992).

    Google Scholar 

  35. U. Meyer, B. Kruse-Lösler, and H.P. Wiesmann, British J. Oral Maxillofac. Surg. 44, 289 (2006).

    Article  Google Scholar 

  36. D.B. Jones, H. Nolte, J.G. Scholubbers, E. Turner, and D. Veltel, Biomaterials 12, 101 (1991).

    Article  Google Scholar 

  37. V. Swaminathan and J.L. Gilbert, Biomaterials 33, 5487 (2012).

    Article  Google Scholar 

  38. D. O’Sullivan, L. Sennerby, D. Jagger, and N. Meredith, Clin. Impl. Dent. Related Res. 6, 48 (2004).

    Article  Google Scholar 

  39. B.S. Sotto-Maior, E.P. Rocha, E.O. de Almeida, A.C. Freitas-Junior, R.B. Anchieta, and A. Del Bel Cury, Brazilian Dent. J. 21, 508 (2010).

    Article  Google Scholar 

  40. R.J. Marshall (M.Sci. thesis, Saint Louis University, 2010), 81.

  41. G. Augustin, T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, and S. Babic, Clin. Biomechan. 27, 313 (2012).

    Article  Google Scholar 

  42. “Bone Materials,” Pacific Research Laboratories (2013), http://www.sawbones.com/Content/MU_Home.

Download references

Acknowledgements

The authors would like to thank Maria Runa for the surface roughness measurements performed in Dr. Wimmers’ Tribology lab at Rush University Medical Center, and Eric Schmidt and Isabella Vieira Marques for Ti-V rod sample preparation. The financial support was provided by the Department of Mechanical Engineering at MTU, and the mechanical tests were conducted in the Biomechanics Research Laboratory at UIC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farid Amirouche or Tolou Shokuhfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Solitro, G.F., Sukotjo, C. et al. Nanotopography and Surface Stress Analysis of Ti6Al4V Bioimplant: An Alternative Design for Stability. JOM 67, 2518–2533 (2015). https://doi.org/10.1007/s11837-015-1341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1341-8

Keywords

Navigation