Skip to main content

Advertisement

Log in

Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lowering the cost of feedstock powder has been a major issue for wider applications of additive manufacturing (AM) of titanium (Ti) and its alloys. A novel and inexpensive Ti sponge material was selected as a precursor and processed using a CSIRO proprietary powder manipulation technology (PMT). The manipulated powder was characterized in terms of the particle size distribution (PSD), roundness, flowability in the Hall Funnel flowmeter, static angle of repose (AOR), apparent density and tap density. In addition, a universal powder bed (UPB) system was used to characterize the manipulated powder behavior after raking. Two benchmark powders, virgin Arcam Ti-6Al-4V powder and used Arcam Ti-6Al-4V powder, were assessed for a comparison. PMT processing of the Ti powder precursor produced near spherically shaped Ti powder in the size range of 75–106 µm, which performed very similarly to the used Arcam powder in the UPB system. The CSIRO PMT offers a cost-effective manipulation process to produce Ti powder promising for AM applications, while the UPB system allows a quick assessment of the powder spreading behavior in AM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.J. Donachie, Titanium: A Technical Guide (Materials Park, OH: ASM International, 2000), p. 47.

    Google Scholar 

  2. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  3. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hermandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, J. Mater. Sci. Tech. 28, 1 (2012).

    Article  Google Scholar 

  4. L.E. Murr, S.M. Gaytan, F. Medina, M.I. Lopez, E. Martinez, and R.B. Wicker, (Paper presented at the 25th Southern Biomedical Engineering Conference 2009, Miami, FL, 2009).

  5. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, J. Mech. Behav. Biomed. Mater. 2, 20 (2009).

    Article  Google Scholar 

  6. K.P. Cooper, JOM 53, 29 (2001).

    Article  Google Scholar 

  7. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).

    Article  Google Scholar 

  8. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M, Qian, JOM 67 (2015). doi:10.1007/s11837-015-1297-8.

  9. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Mater. Charact. 60, 96 (2009).

    Article  Google Scholar 

  10. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, JOM 67 (2015). doi:10.1007/s11837-015-1300-4.

  11. S.M. Gaytan, L.E. Murr, D.H. Hernandez, E. Martinez, S.A. Quinones, F. Medina, and R.B. Wicker, Supplemental Proceedings: Vol. 1: Fabrication, Materials, Processing and Properties (Warrendale, PA: TMS, 2009), pp. 363–369.

  12. P.A. Kobryn, E.H. Moore, and S.L. Semiatin, Scripta Mater. 43, 299 (2000).

    Article  Google Scholar 

  13. P.A. Kobryn and S.L. Semiatin, J. Mater. Proc. Tech. 135, 330 (2003).

    Article  Google Scholar 

  14. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Mater. Sci. Eng. A 513–514, 311 (2009).

    Article  Google Scholar 

  15. H. Fukuda, H. Takahashi, K. Kuramoto, and T. Nakano, Mater. Sci. Forum 706, 488 (2012).

    Article  Google Scholar 

  16. M.J. O’Hara and I.B. Cutler, Proceedings of the British Ceramic Society, vol. 12 (Covina, CA: SAMPE, 1969), pp. 145–154.

  17. N.A. Pohlman, J.A. Roberts, and M.J. Gonser, Powder Technol. 228, 141 (2012).

    Article  Google Scholar 

  18. A. Bauereiß, T. Scharowsky, and C. Körner, J. Mater. Proc. Tech. 214, 2522 (2014).

    Article  Google Scholar 

  19. AMETEK Inc., Metal-Powders, http://www.readingalloys.com/Products/Metal-Powders.aspx.

  20. J. Withers, J. Laughlin, and R. Loutfy (Paper presented at PM2014 World Congress, Orlando, FL, 2014).

  21. X. Lu, C.C. Liu, L.P. Zhu, and X.H. Qu, Powder Technol. 254, 235 (2014).

    Article  Google Scholar 

  22. ASTM F1877-05, Standard Practice for Characterization of Particles (West Conshohocken, PA: ASTM, 2010).

  23. ASTM B855-06, Standard Test Method for Volumetric Flow Rate of Metal Powders Using Arnold Meter and Hall Funnel (West Conshohocken, PA: ASTM, 2006).

  24. ASTM B703-05, Standard Test Method for Apparent Density of Powders Using Arnold Meter (West Conshohocken, PA: ASTM, 2005).

  25. ASTM B527-06, Standard Test Method for Determination of Tap Density of Metallic Powders and Compounds (West Conshohocken, PA: ASTM, 2006).

  26. J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, J. Mater. Proc. Tech. 213, 2109 (2013).

    Article  Google Scholar 

  27. Arcam AB Inc., New! 50 µm Process for High Resolution and Surface Finish (Mölndal, Sweden: Arcam, 2012), http://www.arcam.com/new-50-um-process-for-high-resolution-and-surface-finish.

  28. C. Mangano, A. Piattelli, S. d’Avila, G. Iezzi, F. Mangano, T. Onuma, and J.A. Shibli, J. Oral. Implantol. 36, 91 (2010).

  29. C.Y. Lin, T. Wirtz, F. LaMarca, and S.J. Hollister, J. Biol. Mater. Res. A 83, 272 (2007).

    Article  Google Scholar 

  30. T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, and A. Piattelli, Dental Mater. 24, 1525 (2008).

    Article  Google Scholar 

  31. A. Santomaso, P. Lazzaro, and P. Canu, Chem. Eng. Sci. 58, 2857 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Y. Sun acknowledges a scholarship received from the China Scholarship Council and a fee waiver scholarship offered by the RMIT University. M. Qian acknowledges the the support from the Australian Research Council (ARC) through the Linkage Projects program under ARC LP140100608.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Y. Sun, S. Gulizia or M. Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.Y., Gulizia, S., Oh, C.H. et al. Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications. JOM 67, 564–572 (2015). https://doi.org/10.1007/s11837-015-1301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1301-3

Keywords

Navigation