Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering

Abstract

Bismuth-doped barium titanate ceramics with the general formula Ba1−x Bi2x/3TiO3 (x = 0.0, 0.01, 0.025, 0.05) have been prepared by the solid state reaction technique. The phase formation and structural property of all compositions have been studied by x-ray diffraction (XRD) pattern and Rietveld refinement. XRD pattern reports the single phase tetragonal crystal system with space group of P4mm. All compositions have been sintered at 1100°C in a microwave furnace for 30 min. The variation of dielectric constant with respect to temperature and frequency was studied and it was found that the dielectric constant decreases whereas transition temperature increased with the increase in Bi content. The diffusivity parameter was calculated by the modified Curie–Weiss law and the diffusivity increased with the increase in Bi content. The ferroelectric property was studied by the P–E hysteresis loop and it was observed that the saturation polarization decreased, but the coercive field increased with Bi content. The optical band gap was calculated from UV–Visible spectroscopy and found to decrease with Bi content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Fujishima, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1 (2000).

    Article  Google Scholar 

  2. 2.

    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  3. 3.

    S.P. Feofilov, A.A. Kaplyanskii, A.B. Kulinkin, and R.I. Zakharchenya, J. Lumin. 129, 1689 (2009).

    Article  Google Scholar 

  4. 4.

    H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999).

    Article  Google Scholar 

  5. 5.

    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, and I.W. Kim, J. Alloys Compd. 579, 473 (2013).

    Article  Google Scholar 

  6. 6.

    S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, and T.P. Sinha, Solid State Sci. 30, 68 (2014).

    Article  Google Scholar 

  7. 7.

    S. Mahboob, A.B. Dutta, C. Prakash, G. Swaminathan, S.V. Suryanarayana, G. Prasad, and G.S. Kumar, Mater. Sci. Eng., B 134, 36 (2006).

    Article  Google Scholar 

  8. 8.

    B.D. Stojanovic, Advanced in sintered electronic materials.Proceedings of the Ninth World Round Table Conference on Sintering, ed. B.D. Stojanovic, V.V. Skorokhod, and M.V. Nikolic (New York: Kluwer, 1999), p. 367.

    Google Scholar 

  9. 9.

    Y. Tsur, T.D. Dunbar, and C.A. Randall, J. Electroceram. 7, 25 (2001).

    Article  Google Scholar 

  10. 10.

    M.T. Biscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000).

    Article  Google Scholar 

  11. 11.

    H.M. Chan, M.P. Harmer, and D.M. Smyth, J. Am. Ceram. Soc. 69, 507 (1986).

    Article  Google Scholar 

  12. 12.

    A.S. Shaikh and R.W. Vest, J. Am. Ceram. Soc. 69, 689 (1986).

    Article  Google Scholar 

  13. 13.

    D.K. Hennings, B. Schreinemacher, and H. Schreinemacher, J. Eur. Ceram. Soc. 13, 81 (1994).

    Article  Google Scholar 

  14. 14.

    C.-T. Hu, H.-W. Chen, H.-Y. Chang, and I.-N. Lin, Jpn. J. Appl. Phys. 37, 186 (1998).

    Article  Google Scholar 

  15. 15.

    E.T. Thostenson and T.-W. Chen, Composites A. 30, 1055 (1999).

    Article  Google Scholar 

  16. 16.

    D. Agrawal, J. Cheng, Y. Fang, and R. Roy, Microwave Processing of Ceramics, Composites and Metallic Materials, ed. D.E. Clark, D.C. Folz, C.E. Folgar, and M.M. Mahmoud (American Ceramic Society Publication, Weterviller, 2005), p. 205.

  17. 17.

    M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).

    Article  Google Scholar 

  18. 18.

    R. Angalakurthi and K.C. James Raju, IOP Conf. Ser. Mater. Sci. Eng. 18, 092028 (2011).

  19. 19.

    Y. Fang, M.T. Lanagan, D.K. Agrawal, G.Y. Yang, C.A. Randall, T.R. Shrout, A. Henderson, M. Randall, and A. Tajuddin, J. Electroceram. 15, 13 (2005).

    Article  Google Scholar 

  20. 20.

    H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30 (2006).

    Article  Google Scholar 

  21. 21.

    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  Google Scholar 

  22. 22.

    Fullprof 2000, version July 2001. Juan Rodríguez-Carvajal, Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, Gif sur Yvette Cedex.

  23. 23.

    M. Ferrari and L. Lutterotti, J. Appl. Phys. 76, 7246 (1994).

    Article  Google Scholar 

  24. 24.

    K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, and T. Okuda, Solid State Ionics 108, 129 (1998).

    Article  Google Scholar 

  25. 25.

    C. Ostos, L. Mestres, M.L. Martnez-Sarrión, J.E. Garca, A. Albareda, and R. Perez, Solid State Sci. 11, 1016 (2009).

    Article  Google Scholar 

  26. 26.

    Landolt-Börnsteidn III, Ferroelectric and Related Substances, vol. 16 (Berlin: Springer, 1981).

  27. 27.

    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  28. 28.

    A. Kerfah, K. Taïbi, A. Guehria-Laidoudi, A. Simon, and J. Ravez, Solid State Sci. 8, 613 (2006).

    Article  Google Scholar 

  29. 29.

    B.E. Vugmeister and M.D. Glinichuk, Rev. Mod. Phys. 62, 993 (1990).

    Article  Google Scholar 

  30. 30.

    D.L. Wood and J. Tauc, Phys. Rev. B. 5, 3144 (1972).

    Article  Google Scholar 

  31. 31.

    L.S. Cavalcante, M.F.C. Gurgel, E.C. Paris, A.Z. Simões, M.R. Joya, J.A. Varela, P.S. Pizani, and E. Longo, Acta Mater. 55, 6416 (2007).

    Article  Google Scholar 

  32. 32.

    M. Anicete-Santos, L.S. Cavalcante, E. Orhan, E.C. Paris, L.G.P. Simões, M.R. Joya, I.L.V. Rosa, P.R. de Lucena, M.R.M.C. Santos, L.S. Santos-Júnior, P.S. Pizani, E.R. Leite, J.A. Varela, and E. Longo, Chem. Phys. 316, 260 (2005).

    Article  Google Scholar 

  33. 33.

    C. Laulhé, F. Hippert, R. Bellissent, A. Simon, and G.J. Cuello, Phys. Rev. B. 79, 064104 (2009).

    Article  Google Scholar 

  34. 34.

    M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani, J.A. Varela, and E. Longo, J. Phys. Chem. A 112, 8938 (2008).

    Article  Google Scholar 

  35. 35.

    M. Borah and D. Mohanta, J. Appl. Phys. 112, 124321 (2012).

    Article  Google Scholar 

  36. 36.

    H. Moulkia, S. Hariech, and M.S. Aida, Thin Solid Films 518, 1259 (2009).

    Article  Google Scholar 

  37. 37.

    B. Choudhury, M. Dey, and A. Choudhury, Int. Nano Lett. 3, 25 (2013).

    Article  Google Scholar 

  38. 38.

    N. Kumari, A. Ghosh, S. Tewari, and A. Bhattacharjee, Indian J. Phys. 88, 65 (2014).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Parida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, A., Parida, S., Sarangi, S. et al. Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering. JOM 67, 1896–1904 (2015). https://doi.org/10.1007/s11837-014-1266-7

Download citation

Keywords

  • Barium Titanate
  • Microwave Sinter
  • Barium Titanate
  • Urbach Energy
  • Dielectric Constant Decrease