, Volume 67, Issue 1, pp 44–52 | Cite as

Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods

  • Yuan Li
  • Nitin ChopraEmail author


Graphene is critical for applications in electronics, optical devices, thermal management, energy, and biosystems, while at the same time cost-effective and large-scale production of graphene is a challenge. In this regard, vapor phase graphene synthesis is a bottom-up approach, which could be compatible with device industry fabrication methods. Here, we review the state-of-the-art techniques developed for the scalable production of graphene in bottom-up approaches. These mainly include the epitaxial growth and chemical vapor deposition methods. Product quality, structure, and yields for different graphene growth techniques are discussed and specific examples are described. The article also emphasizes promising methods for scalable graphene production but still needing a deeper research understanding.


Graphene Sheet Epitaxial Growth Graphene Production Graphene Film Chemical Vapor Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was made possible by National Science Foundation (Award #: 0925445) and NSF-EPSCoR-RII award. The authors thank the University of Alabama’s Office of sponsored programs and Research Grant Committee Award for additional support. The authors thank Dr. S. Kapoor for proof reading the manuscript.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, and R. Fasel, Nature 466, 470 (2010).CrossRefGoogle Scholar
  3. 3.
    R.S. Edwards and K.S. Coleman, Nanoscale 5, 38 (2013).CrossRefGoogle Scholar
  4. 4.
    A.W. Moore, Nature 221, 1133 (1969).CrossRefGoogle Scholar
  5. 5.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Sutter, Nat. Mater. 8, 171 (2009).CrossRefGoogle Scholar
  7. 7.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, and S. Mizuno, ACS Nano 4, 7407 (2010).CrossRefGoogle Scholar
  9. 9.
    A.N. Obraztsov, Nat. Nanotechnol. 4, 212 (2009).CrossRefGoogle Scholar
  10. 10.
    A.E. Karu and M. Beer, J. Appl. Phys. 37, 2179 (1966).CrossRefGoogle Scholar
  11. 11.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, and R.S. Ruoff, Science 324, 1312 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Wu, W. Shi, and N. Chopra, J. Phys. Chem. C 116, 12861 (2012).CrossRefGoogle Scholar
  14. 14.
    N. Chopra, J. Wu, and L. Summerville, Carbon 62, 76 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Li, N. Chopra, in MRS Proceedings 1700, ed. Y.K. Yap, D.N. Futaba (Materials Research Society, Warrendale, PA, 2014), mrss14-1700-mm08-13, pp. 79–82. doi: 10.1557/opl.2014.575.
  16. 16.
    N. Chopra, L.G. Bachas, and M.R. Knecht, Chem. Mater. 21, 1176 (2009).CrossRefGoogle Scholar
  17. 17.
    K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, and T. Seyller, Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
  18. 18.
    E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, and A. Ouerghi, Sci. Rep. 4, 4558 (2014).CrossRefGoogle Scholar
  19. 19.
    Y. Wang, H. Sun, R. Zhang, S. Yu, and J. Kong, Carbon 53, 245 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Garaj, W. Hubbard, and J.A. Golovchenko, Appl. Phys. Lett. 97, 183103 (2010).CrossRefGoogle Scholar
  21. 21.
    V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova, A.B. Preobrajenski, and M. Knupfer, Nano Lett. 10, 992 (2010).CrossRefGoogle Scholar
  22. 22.
    Q. Wang, W. Zhang, L. Wang, K. He, X. Ma, and Q. Xue, J. Phys.: Condens. Matter 25, 095002 (2013).Google Scholar
  23. 23.
    M. Xu, D. Fujita, K. Sagisaka, E. Watanabe, and N. Hanagata, ACS Nano 5, 1522 (2011).CrossRefGoogle Scholar
  24. 24.
    H. Ago, I. Tanaka, Y. Ogawa, R.M. Yunus, M. Tsuji, and H. Hibino, ACS Nano 7, 10825 (2013).CrossRefGoogle Scholar
  25. 25.
    J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, and D. Whang, Science 344, 286 (2014).CrossRefGoogle Scholar
  26. 26.
    G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, and X. Wang, Sci. Rep. 3, 1810 (2013).Google Scholar
  27. 27.
    I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, and S. Smirnov, Carbon 54, 58 (2013).CrossRefGoogle Scholar
  28. 28.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, and J. Kong, Nano Lett. 9, 30 (2008).CrossRefGoogle Scholar
  29. 29.
    Z.Y. Juang, C.Y. Wu, A.Y. Lu, C.Y. Su, K.C. Leou, F.R. Chen, and C.H. Tsai, Carbon 48, 3169 (2010).CrossRefGoogle Scholar
  30. 30.
    H. An, W.J. Lee, and J. Jung, Curr. Appl. Phys. 11, S81 (2011).CrossRefGoogle Scholar
  31. 31.
    S. Chen, P. Bao, L. Xiao, and G. Wang, Carbon 64, 158 (2013).CrossRefGoogle Scholar
  32. 32.
    W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang, G. Xie, and G. Zhang, Nat. Mater. 12, 792 (2013).CrossRefGoogle Scholar
  33. 33.
    S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, and M. Jiang, Sci. Rep. 3, 2666 (2013).Google Scholar
  34. 34.
    G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, and A.C. Johnson, ACS Nano 7, 10129 (2013).CrossRefGoogle Scholar
  35. 35.
    M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, and S. Lee, Adv. Mater. 25, 2746 (2013).CrossRefGoogle Scholar
  36. 36.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
  37. 37.
    T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, J. Phys. D Appl. Phys 46, 063001 (2013).CrossRefGoogle Scholar
  38. 38.
    J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park, E.K. Lee, and S. Cho, ACS Nano 8, 950 (2014).CrossRefGoogle Scholar
  39. 39.
    A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett. 8, 2012 (2008).CrossRefGoogle Scholar
  40. 40.
    A. Dato, Z. Lee, K.J. Jeon, R. Erni, V. Radmilovic, T.J. Richardson, and M. Frenklach, Chem. Commun. 40, 6095 (2009).CrossRefGoogle Scholar
  41. 41.
    L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, and H.J. Gao, Adv. Mater. 25, 250 (2013).CrossRefGoogle Scholar
  42. 42.
    N.K. Memon, S.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.M.B. Goncalves, B.H. Kear, and M. Chhowalla, Carbon 49, 5064 (2011).CrossRefGoogle Scholar
  43. 43.
    Z. Li, H. Zhu, D. Xie, K. Wang, A. Cao, J. Wei, and D. Wu, Chem. Commun. 47, 3520 (2011).CrossRefGoogle Scholar
  44. 44.
    E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A.R. Biris, and A.S. Biris, Chem. Commun. 27, 4061 (2009).CrossRefGoogle Scholar
  45. 45.
    A. Nepal, G.P. Singh, B.N. Flanders, and C.M. Sorensen, Nanotechnology 24, 245602 (2013).CrossRefGoogle Scholar
  46. 46.
    J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, and M. Terrones, Nano Lett. 8, 2773 (2008).CrossRefGoogle Scholar
  47. 47.
    L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010).CrossRefGoogle Scholar
  48. 48.
    Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, and J.H. Ahn, Nano Lett. 10, 490 (2010).CrossRefGoogle Scholar
  49. 49.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, and B.H. Hong, Nature 457, 706 (2009).CrossRefGoogle Scholar
  50. 50.
    L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol. 5, 321 (2010).CrossRefGoogle Scholar
  51. 51.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458, 877 (2009).CrossRefGoogle Scholar
  52. 52.
    V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 49, 222 (2011).CrossRefGoogle Scholar
  53. 53.
    Z. Xu, H. Li, W. Li, G. Cao, Q. Zhang, K. Li, and J. Wang, Chem. Commun. 47, 1166 (2011).CrossRefGoogle Scholar
  54. 54.
    M. Choucair, P. Thordarson, and J.A. Stride, Nat. Nanotechnol. 4, 30 (2008).CrossRefGoogle Scholar
  55. 55.
    B. Zhang, J. Song, G. Yang, and B. Han, Chem. Sci. 5, 4656 (2014).CrossRefGoogle Scholar
  56. 56.
    Y. Shen and A.C. Lua, Sci. Rep. 3, 3037 (2013).Google Scholar
  57. 57.
    J.C. Yoon, J.S. Lee, S.I. Kim, K.H. Kim, and J.H. Jang, Sci. Rep. 3, 1788 (2013).Google Scholar
  58. 58.
    D.G. Matei, N.E. Weber, S. Kurasch, S. Wundrack, M. Woszczyna, M. Grothe, and A. Turchanin, Adv. Mater. 25, 4146 (2013).CrossRefGoogle Scholar
  59. 59.
    B. Shen, D. Lu, W. Zhai, and W. Zheng, J. Mater. Chem. C 1, 50 (2013).CrossRefGoogle Scholar
  60. 60.
    J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT)The University of AlabamaTuscaloosaUSA
  2. 2.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA

Personalised recommendations