Skip to main content
Log in

Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene is a two-dimensional nanomaterial that has unique electrical, mechanical, thermal, and optical properties. For realizing the practical applications of graphene, one of the major challenges lies in cost-effective production of graphene-based nanomaterials at a large scale. Significant research efforts have been demonstrated in regard to scalable manufacturing of graphene and show strong potential for their commercialization and industrialization. Here, we review the state-of-the-art techniques developed for the scalable production of graphene. This review mainly discusses the top-down techniques including exfoliation of bulk graphite and chemical reduction of graphene oxide. Critical comparison for graphene quality, structure, and yields for different techniques is discussed and specific examples are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, and J.E. Goldberger, ACS Nano 7, 2898 (2013).

    Article  Google Scholar 

  2. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).

    Article  Google Scholar 

  3. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  5. M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).

    Article  Google Scholar 

  6. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  Google Scholar 

  7. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  9. A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  10. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

  11. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, and A.K. Geim, Science 320, 1308 (2008).

    Article  Google Scholar 

  12. L. Dai, Acc. Chem. Res. 46, 31 (2012).

    Article  Google Scholar 

  13. C.K. Chua and M. Pumera, Chem. Soc. Rev. 42, 3222 (2013).

    Article  Google Scholar 

  14. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, and K.S. Kim, Chem. Rev. 112, 6156 (2012).

    Article  Google Scholar 

  15. Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, and H. Zhang, Adv. Energy Mater. 4, 1 (2014).

    Google Scholar 

  16. M. Pumera, Energy Environ. Sci. 4, 668 (2011).

    Article  Google Scholar 

  17. K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).

    Article  Google Scholar 

  18. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  Google Scholar 

  19. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, and L. Shi, Science 328, 213 (2010).

    Article  Google Scholar 

  20. R.M. Westervelt, Science 320, 324 (2008).

    Article  Google Scholar 

  21. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photonics 4, 611 (2010).

    Article  Google Scholar 

  22. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan, Nano Lett. 8, 3137 (2008).

    Article  Google Scholar 

  23. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, and B.H. Weiller, ACS Nano 3, 301 (2009).

    Article  Google Scholar 

  24. Z. Fang, Z. Liu, Y. Wang, P.M. Ajayan, P. Nordlander, and N.J. Halas, Nano Lett. 12, 3808 (2012).

    Article  Google Scholar 

  25. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, and F.H. Koppens, Nature 487, 77 (2012).

    Google Scholar 

  26. J. Maassen, W. Ji, and H. Guo, Nano Lett. 11, 151 (2010).

    Article  Google Scholar 

  27. A.N. Grigorenko, M. Polini, and K.S. Novoselov, Nat. Photonics 6, 749 (2012).

    Article  Google Scholar 

  28. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, and X. Zhang, Nature 474, 64 (2011).

    Article  Google Scholar 

  29. X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).

    Article  Google Scholar 

  30. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).

    Article  Google Scholar 

  31. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  32. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  33. X.M. Chen, G.H. Wu, Y.Q. Jiang, Y.R. Wang, and X. Chen, Analyst 136, 4631 (2011).

    Article  Google Scholar 

  34. Y. Zhang, L. Zhang, and C. Zhou, Acc Chem Res 46, 2329 (2013).

    Article  Google Scholar 

  35. C. Mattevi, H. Kim, and M. Chhowalla, J Mater Chem 21, 3324 (2011).

    Article  Google Scholar 

  36. M.E. Ramón, A. Gupta, C. Corbet, D.A. Ferrer, H.C. Movva, G. Carpenter, and S.K. Banerjee, ACS Nano 5, 7198 (2011).

    Article  Google Scholar 

  37. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, and B.H. Hong, Nature 457, 706 (2009).

    Article  Google Scholar 

  38. R.M. Frazier, W.L. Hough, N. Chopra, and K.W. Hathcock, Recent Patents Nanotechnol 6, 79 (2012).

    Article  Google Scholar 

  39. A. Ciesielski and P. Samorì, Chem. Soc. Rev. 43, 381 (2014).

    Article  Google Scholar 

  40. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, and J.N. Coleman, Nat. Mater. 13, 624 (2014).

    Article  Google Scholar 

  41. I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2012).

    Article  Google Scholar 

  42. R. Hu, W. Sun, Y. Chen, M. Zeng, and M. Zhu, J. Mater. Chem. A 2, 9118 (2014).

    Article  Google Scholar 

  43. T. Lin, J. Chen, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, J. Mater. Chem. A 1, 500 (2013).

    Article  Google Scholar 

  44. C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Röhrl, and W. Peukert, Carbon 48, 3196 (2010).

    Article  Google Scholar 

  45. X. Geng, Y. Guo, D. Li, W. Li, C. Zhu, X. Wei, and L. Liu, Sci. Rep. 3, 1134 (2013).

    Google Scholar 

  46. W. Lu, S. Liu, X. Qin, L. Wang, J. Tian, Y. Luo, and X. Sun, J. Mater. Chem. 22, 8775 (2012).

    Article  Google Scholar 

  47. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, and J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008).

    Article  Google Scholar 

  48. Y. Wang, X. Tong, X. Guo, Y. Wang, G. Jin, and X. Guo, Nanotechnology 24, 475602 (2013).

    Article  Google Scholar 

  49. H. Yang, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, and C. Casiraghi, Carbon 53, 357 (2013).

    Article  Google Scholar 

  50. L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solis-Fernandez, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascón, Carbon 49, 1653 (2011).

    Article  Google Scholar 

  51. M. Zhang, R.R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, and H. He, Small 6, 1100 (2010).

    Article  Google Scholar 

  52. E.Y. Choi, W. San Choi, Y.B. Lee, and Y.Y. Noh, Nanotechnology 22, 365601 (2011).

    Article  Google Scholar 

  53. V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, and A. Yu, Sci. Rep. 3, 1378 (2013).

    Article  Google Scholar 

  54. W. Du, J. Lu, P. Sun, Y. Zhu, and X. Jiang, Chem. Phys. Lett. 568, 198 (2013).

    Article  Google Scholar 

  55. J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, and K.P. Loh, ACS Nano 3, 2367 (2009).

    Article  Google Scholar 

  56. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, Adv. Funct. Mater. 18, 1518 (2008).

    Article  Google Scholar 

  57. D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, and T. Ryhänen, Chem. Commun. 48, 1239 (2012).

    Article  Google Scholar 

  58. A.T. Najafabadi and E. Gyenge, Carbon 71, 58 (2014).

    Article  Google Scholar 

  59. Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, and H. Lee, Small 10, 866 (2014).

    Article  Google Scholar 

  60. V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 48, 2953 (2010).

    Article  Google Scholar 

  61. P. Russo, A. Hu, G. Compagnini, W.W. Duley, and N.Y. Zhou, Nanoscale 6, 2381 (2014).

    Article  Google Scholar 

  62. W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, and X. Liang, Nano Res. 2, 706 (2009).

    Article  Google Scholar 

  63. X. Liu, M. Zheng, K. Xiao, Y. Xiao, C. He, H. Dong, and Y. Liu, Nanoscale 6, 4598 (2014).

    Article  Google Scholar 

  64. N.W. Pu, C.A. Wang, Y. Sung, Y.M. Liu, and M.D. Ger, Mater. Lett. 63, 1987 (2009).

    Article  Google Scholar 

  65. I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Carbon 48, 4570 (2010).

    Article  Google Scholar 

  66. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Carbon 48, 255 (2010).

    Article  Google Scholar 

  67. W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  68. Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, and G. Shi, Phys. Chem. Chem. Phys. 15, 9907 (2013).

    Article  Google Scholar 

  69. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  70. L. Sun and B. Fugetsu, Mater. Lett. 109, 207 (2013).

    Article  Google Scholar 

  71. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  72. J.M. Tour, Nat. Mater. 13, 545 (2014).

    Article  Google Scholar 

  73. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).

    Article  Google Scholar 

  74. L.H. Liu, M.M. Lerner, and M. Yan, Nano Lett. 10, 3754 (2010).

    Article  Google Scholar 

  75. B.J. Avan Wees, Chem. Commun. 46, 7539 (2010).

    Article  Google Scholar 

  76. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  77. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  78. W. Gao, L.B. Alemany, L. Ci, and P.M. Ajayan, Nat. Chem. 1, 403 (2009).

    Article  Google Scholar 

  79. H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, Nat. Commun. 4, 1539 (2013).

    Article  Google Scholar 

  80. M. Zhang, B. Gao, D.C. Vanegas, E.S. McLamore, J. Fang, L. Liu, and H. Chen, Chem. Eng. J. 243, 340 (2014).

    Article  Google Scholar 

  81. C. Zhu, S. Guo, Y. Fang, and S. Dong, ACS Nano 4, 2429 (2010).

    Article  Google Scholar 

  82. X. Zhou and Z. Liu, Chem. Commun. 46, 2611 (2010).

    Article  Google Scholar 

  83. Y. Tian, G. Wu, X. Tian, X. Tao, and W. Chen, Sci. Rep. 3, 3327 (2013).

    Google Scholar 

  84. I.K. Moon, J. Lee, R.S. Ruoff, and H. Lee, Nat. Commun. 1, 73 (2010).

    Article  Google Scholar 

  85. Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, J. Feng, and F. Wei, ACS Nano 5, 191 (2010).

    Article  Google Scholar 

  86. C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, and J.H. Lee, Carbon 49, 3497 (2011).

    Article  Google Scholar 

  87. H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, and X.H. Xia, ACS Nano 3, 2653 (2009).

    Article  Google Scholar 

  88. I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2012).

    Article  Google Scholar 

  89. R. Arvidsson, D. Kushnir, B.A. Sandén, and S. Molander, Environ. Sci. Technol. 48, 4529 (2014).

    Article  Google Scholar 

  90. S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park, and H. Lee, Sci. Rep. 3, 1929 (2013).

    Google Scholar 

  91. K.H. Lee, B. Lee, S.J. Hwang, J.U. Lee, H. Cheong, O.S. Kwon, and N.H. Hur, Carbon 69, 327 (2014).

    Article  Google Scholar 

  92. S. Wakeland, R. Martinez, J.K. Grey, and C.C. Luhrs, Carbon 48, 3463 (2010).

    Article  Google Scholar 

  93. A. Kaniyoor, T.T. Baby, and S. Ramaprabhu, J. Mater. Chem. 20, 8467 (2010).

    Article  Google Scholar 

  94. H. He, X. Li, J. Wang, T. Qiu, Y. Fang, Q. Song, and L. Zhi, Small 9, 820 (2013).

    Article  Google Scholar 

  95. D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, and B.H. Han, Nat. Commun. 5, 4716 (2014).

    Article  Google Scholar 

  96. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, and Y. Chen, Nat. Nanotechnol. 9, 555 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by National Science Foundation (Award #: 0925445) and NSF-EPSCoR-RII award. The authors thank the University of Alabama’s Office of sponsored programs and Research Grant Committee Award for additional support. The authors thank Dr. S. Kapoor for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Chopra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chopra, N. Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods. JOM 67, 34–43 (2015). https://doi.org/10.1007/s11837-014-1236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1236-0

Keywords

Navigation