Skip to main content
Log in

Growth Speed and Substitution Effects on Alignment and Thermal Transport Properties of Bi-2212 Textured Superconductors

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fe-substituted superconducting thin BiSrCaCuO rods with nominal compositions of Bi2Sr2Ca1Cu2−x Fe x O8+δ (x = 0, 0.01, 0.03, 0.05, and 0.1) were fabricated using the laser floating zone technique at two different growth speeds, 15 mm h−1 and 30 mm h−1. The influences of growth speed and Fe substitution on the grain alignment in the rods were evaluated by means of x-ray pole figure studies. The obtained results showed that both applied growth speed and Fe substitution play a crucial role on grain alignment, which is strongly connected with the current-carrying capacity of the rods. It was found that the rods grown at 15 mm h−1 (G15) have stronger orientation than the rods grown at 30 mm h−1 (G30). However, in contrast to the G15 rods, an increased substitution rate improved the orientation of the G30 rods. Another important observation is that the increase on the substitution caused a decrease on the grain size of all the rods. The decrease of critical temperature values of the rods upon substitution was ascribed to both grain size effect and formation of a nonsuperconducting Fe-rich phase detected in scanning electron microscope/energy-dispersive x-ray analyses. The thermal conductivity values of the G15 and G30 rods were found to be in the range of 0.9–1.9 and 1.1–1.18 W m−1 K−1 at 150 K, respectively. The higher values of figure of merit (ZT), at all temperature ranges, were obtained from the highest substituted rods (x = 0.1) for both of the applied growth speeds. In addition, it was observed that the ZT of G30 rods are up to three times higher than that of G15 ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Ozkurt, M.A. Madre, A. Sotelo, M.E. Yakinci, and B. Ozcelik, J. Supercond. Nov. Magn. 25, 799 (2012).

    Article  Google Scholar 

  2. M.E. Yakinci, M.A. Madre, M. Ozabaci, and A. Sotelo, J. Supercond. Nov. Magn. 26, 1135 (2013).

    Article  Google Scholar 

  3. L.A. Angurel, J.C. Diez, G.F. de la Fuente, F. Gimeno, F. Lera, C. Lopez-Gascon, E. Martinez, M. Mora, R. Navarro, A. Sotelo, N. Andres, S. Recuero, and M.P. Arroyo, Phys. Stat. Sol. (A) 203, 2931 (2006).

    Article  Google Scholar 

  4. A. Tampieri and G. Celotti, Supercond. Sci. Technol. 13, 1113 (2000).

    Article  Google Scholar 

  5. K.T. Kim, J.H. Lim, S.H. Jang, E.C. Park, J. Joo, G.W. Hong, C.J. Kim, H.R. Kim, and O.B. Hyun, Physica C 463–465, 460 (2007).

    Article  Google Scholar 

  6. L. Garcia-Tabares, J. Calero, P. Abramian, F. Toral, L.A. Angurel, J.C. Diez, R. Burriel, E. Natividad, R. Iturbe, and J. Etxeandia, IEEE Trans. Appl. Supercond. 11, 2543 (2001).

    Article  Google Scholar 

  7. L. Garcia-Tabares, J. Calero, P. Abramian, F. Toral, A. Grau, L.A. Angurel, and J.C. Diez, IEEE Trans. Appl. Supercond. 9, 1880 (1999).

    Article  Google Scholar 

  8. M.F. Carrasco, V.S. Amaral, R.F. Silva, and F.M. Costa, Appl. Surf. Sci. 257, 5283 (2011).

    Article  Google Scholar 

  9. A. Sotelo, S. Rasekh, M.A. Madre, and J.C. Diez, J. Supercond. Nov. Magn. 24, 19 (2011).

    Article  Google Scholar 

  10. M. Mora, A. Sotelo, H. Amaveda, M.A. Madre, J.C. Diez, F. Capel, and J.M. Lopez-Cepero, J. Eur. Ceram. Soc. 27, 3959 (2007).

    Article  Google Scholar 

  11. E. Natividad, L.A. Angurel, J.M. Andres, and M.C. Mayoral, Supercond. Sci. Technol. 17, 308 (2004).

    Article  Google Scholar 

  12. M.R.B. Andreeta, E.R.M. Andreeta, A.C. Hernandes, and R.S. Feigelson, J. Cryst. Growth 234, 759 (2002).

    Article  Google Scholar 

  13. H. Miao, J.C. Diez, L.A. Angurel, and G.F. de la Fuente, Supercond. Sci. Technol. 13, 1135 (2000).

    Article  Google Scholar 

  14. M. Mora, L.A. Angurel, J.C. Diez, R.J. Drost, and P.H. Kes, Physica C 372–376, 1179 (2002).

    Article  Google Scholar 

  15. G. de la Fuente, J.C. Diez, L.A. Angurel, J.I. Pena, A. Sotelo, and R. Navarro, Adv. Mater. 7, 10 (1995).

    Article  Google Scholar 

  16. S. Bhattacharya, S. Chatterjee, K. Goswami, and B.K. Chaudhuri, J. Mater. Sci. Lett. 17, 1575 (1998).

    Article  Google Scholar 

  17. S.M. Khalil, Smart Mater. Struct. 14, 804 (2005).

    Article  Google Scholar 

  18. L.A. Angurel, G.F. de la Fuente, A. Badia, A. Larrea, J.C. Diez, J.I. Pena, E. Martinez, and R. Navarro, A.V. Narlikar, ed., Studies of High Temperature Superconductors, vol. 21 (New York, NY: Nova Science Publishers, 1997), pp. 1–31.

  19. M.F. Carrasco, R.A. Silva, N.J.O. Silva, R.F. Silva, J.M. Vieira, and F.M. Costa, Appl. Surf. Sci. 255, 5503 (2009).

    Article  Google Scholar 

  20. L.A. Angurel, J.C. Diez, E. Martinez, J.I. Pena, G.F. de la Fuente, and R. Navarro, Physica C 302, 39 (1998).

    Article  Google Scholar 

  21. M.F. Carrasco, V.S. Amaral, R.F. Silva, J.M. Vieira, and F.M. Costa, Appl. Surf. Sci. 252, 4957 (2006).

    Article  Google Scholar 

  22. P.M. Sarun, S. Vinu, R. Shabna, and U. Syamaprasad, J. Alloy Compd. 497, 6 (2010).

    Article  Google Scholar 

  23. O. Ozturk, M. Akdogan, H. Aydin, M. Yilmazlar, C. Terzioglu, and I. Belenli, Physica B 399, 94 (2007).

    Article  Google Scholar 

  24. S. Castellazzi, M.R. Cimberle, C. Ferdeghini, E. Giannini, G. Grasso, D. Marre, M. Putti, and A.S. Siri, Physica C 273, 314 (1997).

    Article  Google Scholar 

  25. V. Plechacek and J. Hejtmanek, Physica C 282–287, 2577 (1997).

    Article  Google Scholar 

  26. V. Ashokan and B.D. Indu, Thin Solid Films 518, e28 (2010).

    Article  Google Scholar 

  27. M.A. Aksan, O. Kizilaslan, E.N. Aksan, and M.E. Yakinci, Physica B 407, 2820 (2012).

    Article  Google Scholar 

  28. L. Bo, W. Bai-Mei, and M. Ausloos, Chin. Phys. Lett. 21, 1337 (2004).

    Article  Google Scholar 

  29. A. Biju, U. Syamaprasad, A. Rao, J.G. Xu, K.M. Sivakumar, and Y.K. Kuo, Physica C 466, 69 (2007).

    Article  Google Scholar 

  30. P.F. Herrmann, C. Albrecht, J. Bock, C. Cottevieille, S. Elschned, W. Herkert, M.O. Lafod, H. Lauvray, A. Leriche, W. Nick, E. Preisler, H. Salzburger, J.M. Tourre, and T. Verhaege, IEEE T. Appl. Supercond. 3, 876 (1993).

    Article  Google Scholar 

  31. E. Natividad, M. Castro, R. Burriel, L.A. Angurel, J.C. Diez, and R. Navarro, Supercond. Sci. Technol. 15, 1022 (2002).

    Article  Google Scholar 

  32. M. Matsukawa, F. Tatezaki, K. Noto, H. Fujishiro, K. Michishita, and Y. Kubo, Cryogenics 34, 685 (1993).

    Article  Google Scholar 

  33. S. Nakamae and J. Schwartz, IEEE T. Appl. Supercon. 7, 1699 (1997).

    Article  Google Scholar 

  34. K. Khrishana, N.P. Ong, Q. Li, G.D. Gu, and N. Koshizuka, Science 277, 83 (1997).

    Article  Google Scholar 

  35. M.C. Sekhar and S.V. Suryanarayana, Physica C 415, 209 (2004).

    Article  Google Scholar 

  36. L. Forro, J. Lukatela, and B. Keszei, Solid State Commun. 73, 501 (1990).

    Article  Google Scholar 

  37. A.B. Kaiser, Phys. Rev. B 35, 4677 (1987).

    Article  Google Scholar 

  38. M.A. Aksan and M.E. Yakinci, J. Alloy Compd. 385, 33 (2004).

    Article  Google Scholar 

  39. N. Nagaosa and P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990).

    Article  Google Scholar 

  40. A. Bhaskar, Y.C. Huang, and C.J. Liu, Ceram. Int. 40, 5937 (2014).

    Article  Google Scholar 

  41. H. Bougrine, M. Ausloos, R. Cloots, and M. Pekala (Paper presented at the Proceedings of 17th International Conference on Thermoelectrics, ICT98, Nagoya, Japan, 1998), pp. 273–276.

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under 2214 International Doctoral Research Fellowship Program (M. Ozabaci). A. Sotelo and M.A. Madre acknowledge DGA (Consolidated research group T12) for financial support. M.A. Madre acknowledges MINECO-FEDER (Project MAT2011-22719) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ozabaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozabaci, M., Rasekh, S., Kizilaslan, O. et al. Growth Speed and Substitution Effects on Alignment and Thermal Transport Properties of Bi-2212 Textured Superconductors. JOM 67, 222–232 (2015). https://doi.org/10.1007/s11837-014-1231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1231-5

Keywords

Navigation