, Volume 67, Issue 1, pp 211–221 | Cite as

High Performance Oxides-Based Thermoelectric Materials

  • Guangkun Ren
  • Jinle Lan
  • Chengcheng Zeng
  • Yaochun Liu
  • Bin Zhan
  • Sajid Butt
  • Yuan-Hua Lin
  • Ce-Wen Nan


Thermoelectric materials have attracted much attention due to their applications in waste-heat recovery, power generation, and solid state cooling. In comparison with thermoelectric alloys, oxide semiconductors, which are thermally and chemically stable in air at high temperature, are regarded as the candidates for high-temperature thermoelectric applications. However, their figure-of-merit ZT value has remained low, around 0.1–0.4 for more than 20 years. The poor performance in oxides is ascribed to the low electrical conductivity and high thermal conductivity. Since the electrical transport properties in these thermoelectric oxides are strongly correlated, it is difficult to improve both the thermoelectric power and electrical conductivity simultaneously by conventional methods. This review summarizes recent progresses on high-performance oxide-based thermoelectric bulk-materials including n-type ZnO, SrTiO3, and In2O3, and p-type Ca3Co4O9, BiCuSeO, and NiO, enhanced by heavy-element doping, band engineering and nanostructuring.


In2O3 Spark Plasma Sinter Bi2Te3 Seebeck Coefficient Thermoelectric Material 



This work was financially supported by the Ministry of Science & Technology of China through a 973-Project, under Grant No. 2013CB632506, NSF of China under Grant No. 51025205 and 11234012, and Specialized Research Fund for the Doctoral Program of Higher Education, under Grant No. 20120002110006.


  1. 1.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).Google Scholar
  2. 2.
    M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).Google Scholar
  3. 3.
    W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).Google Scholar
  4. 4.
    Q. Hou, D. Liang, X. Feng, W. Zhao, Y. Chen, and Y. He, Mod. Phys. Lett. B 21, 1447 (2007).Google Scholar
  5. 5.
    A. Minnich, H. Lee, X. Wang, G. Joshi, M. Dresselhaus, Z. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009).Google Scholar
  6. 6.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).Google Scholar
  7. 7.
    A. Nag and V. Shubha, J. Electron. Mater. 43, 962 (2014).Google Scholar
  8. 8.
    Y.-H. Lin, C.-W. Nan, Y. Liu, J. Li, T. Mizokawa, and Z. Shen, J. Am. Ceram. Soc. 90, 132 (2007).Google Scholar
  9. 9.
    J. Lan, Y.H. Lin, H. Fang, A. Mei, C.W. Nan, Y. Liu, S. Xu, and M. Peters, J. Am. Ceram. Soc. 93, 2121 (2010).Google Scholar
  10. 10.
    T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).Google Scholar
  11. 11.
    J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C.W. Nan, Adv. Mater. 25, 5086 (2013).Google Scholar
  12. 12.
    P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).Google Scholar
  13. 13.
    D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).Google Scholar
  14. 14.
    W. Shin and N. Murayama, Jpn. J. Appl. Phys. B 38, L1336 (1999).Google Scholar
  15. 15.
    K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).Google Scholar
  16. 16.
    H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).Google Scholar
  17. 17.
    J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).Google Scholar
  18. 18.
    K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).Google Scholar
  19. 19.
    M. Ohtaki, Kyushu University Global COE Program, Novel Carbon Resour. Sci. Newslett. 3 (2010).Google Scholar
  20. 20.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).Google Scholar
  21. 21.
    J. Sui, J. Li, J. He, Y.-L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.-D. Zhao, Energ. Environ. Sci. 6, 2916 (2013).Google Scholar
  22. 22.
    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).Google Scholar
  23. 23.
    M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).Google Scholar
  24. 24.
    Z.-H. Wu, H.-Q. Xie, and Y.-B. Zhai, Appl. Phys. Lett. 103, 243901 (2013).Google Scholar
  25. 25.
    D. Khanal, J.W. Yim, W. Walukiewicz, and J. Wu, Nano Lett. 7, 1186 (2007).Google Scholar
  26. 26.
    C. Wang, Y. Wang, G. Zhang, C. Peng, and G. Yang, Phys. Chem. Chem. Phys. 16, 3771 (2014).Google Scholar
  27. 27.
    N. Schäuble, B.E. Süess, S. Populoh, A. Weidenkaff, and M.H. Aguirre, eds., A Morphology Study on Thermoelectric Al-Substituted ZnO. 9th European Conference on Thermoelectrics: ECT2011 (Melville, NY: AIP Publishing, 2012).Google Scholar
  28. 28.
    P. Jood, R.J. Mehta, Y. Zhang, T. Borca-Tasciuc, S.X. Dou, D.J. Singh, and G. Ramanath, RSC Advances 4, 6363 (2014).Google Scholar
  29. 29.
    S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).Google Scholar
  30. 30.
    H. Suzuki, H. Bando, Y. Ootuka, I.H. Inoue, T. Yamamoto, K. Takahashi, and Y. Nishihara, J. Phys. Soc. Jpn. 65, 1529 (1996).Google Scholar
  31. 31.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).Google Scholar
  32. 32.
    N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Rep. 3 (2013).Google Scholar
  33. 33.
    K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, and T. Hyeon, J. Mater. Chem. A 2, 4217 (2014).Google Scholar
  34. 34.
    B. Cheng, H. Fang, J. Lan, Y. Liu, Y.-H. Lin, and C.-W. Nan, J. Am. Ceram. Soc. 94, 2279 (2011).Google Scholar
  35. 35.
    Y. Liu, Y.H. Lin, W. Xu, B. Cheng, J. Lan, D. Chen, H. Zhu, and C.W. Nan, J. Am. Ceram. Soc. 95, 2568 (2012).Google Scholar
  36. 36.
    J. Lan, Y.H. Lin, Y. Liu, S. Xu, and C.W. Nan, J. Am. Ceram. Soc. 95, 2465 (2012).Google Scholar
  37. 37.
    D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).Google Scholar
  38. 38.
    A. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B. 62, 166 (2000).Google Scholar
  39. 39.
    Y. Morita, J. Poulsen, K. Sakai, T. Motohashi, T. Fujii, I. Terasaki, H. Yamauchi, and M. Karppinen, J. Solid State Chem. 177, 3149 (2004).Google Scholar
  40. 40.
    R. Asahi, J. Sugiyama, and T. Tani, Phys. Rev. B 66, 155103 (2002).Google Scholar
  41. 41.
    G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, Appl. Phys. Lett. 80, 3760 (2002).Google Scholar
  42. 42.
    G. Xu, R. Funahashi, M. Shikano, Q. Pu, and B. Liu, Solid State Commun. 124, 73 (2002).Google Scholar
  43. 43.
    Y. Hu, E. Sutter, W. Si, and Q. Li, Appl. Phys. Lett. 87, 171912 (2005).Google Scholar
  44. 44.
    M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).Google Scholar
  45. 45.
    O. Motrunich and P.A. Lee, Phys. Rev. B 69, 214516 (2004).Google Scholar
  46. 46.
    P.-H. Xiang, Y. Kinemuchi, H. Kaga, and K. Watari, J. Alloys Compd. 454, 364 (2008).Google Scholar
  47. 47.
    Y.-H. Lin, J. Lan, Z. Shen, Y. Liu, C.-W. Nan, and J.-F. Li, Appl. Phys. Lett. 94, 072107 (2009).Google Scholar
  48. 48.
    T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.-F. Li, and J. Li, J. Phys. Chem. C 114, 10061 (2010).Google Scholar
  49. 49.
    C. Barreteau, D. Bérardan, L. Zhao, and N. Dragoe, J. Mater. Chem. A 1, 2921 (2013).Google Scholar
  50. 50.
    J.-L. Lan, B. Zhan, Y.-C. Liu, B. Zheng, Y. Liu, Y.-H. Lin, and C.-W. Nan, Appl. Phys. Lett. 102, 123905 (2013).Google Scholar
  51. 51.
    F. Li, T.-R. Wei, F. Kang, and J.-F. Li, J. Mater. Chem. A 1, 11942 (2013).Google Scholar
  52. 52.
    J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L.-D. Zhao, J. Alloys Compd. 551, 649 (2013).Google Scholar
  53. 53.
    Y. Liu, J. Lan, W. Xu, Y. Liu, Y.L. Pei, B. Cheng, D.B. Liu, Y.H. Lin, and L.D. Zhao, Chem. Commun. (Camb.) 49, 8075 (2013).Google Scholar
  54. 54.
    S.D.N. Luu and P. Vaqueiro, J. Mater. Chem. A 1, 12270 (2013).Google Scholar
  55. 55.
    L. Pan, D. Bérardan, L. Zhao, C.L. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).Google Scholar
  56. 56.
    D. Sun Lee, T.-H. An, M. Jeong, H.-S. Choi, Y. Soo Lim, W.-S. Seo, C.-H. Park, C. Park, and H.-H. Park, Appl. Phys. Lett. 103, 232110 (2013).Google Scholar
  57. 57.
    W. Xu, Y. Liu, L.-D. Zhao, P. An, Y.-H. Lin, A. Marcelli, and Z. Wu, J. Mater. Chem. A 1, 12154 (2013).Google Scholar
  58. 58.
    D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, J. Mater. Chem. A 1, 8888 (2013).Google Scholar
  59. 59.
    C. Wiebe, J. Greedan, J. Gardner, Z. Zeng, and M. Greenblatt, Phys. Rev. B 64, 064421 (2001).Google Scholar
  60. 60.
    A. Kusainova, P. Berdonosov, L. Akselrud, L. Kholodkovskaya, V. Dolgikh, and B. Popovkin, J. Solid State Chem. 112, 189 (1994).Google Scholar
  61. 61.
    A. Richard, J. Russell, A. Zakutayev, L. Zakharov, D. Keszler, and J. Tate, J. Solid State Chem. 187, 15 (2012).Google Scholar
  62. 62.
    L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energ. Environ. Sci. 7, 251 (2014).Google Scholar
  63. 63.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).Google Scholar
  64. 64.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).Google Scholar
  65. 65.
    J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).Google Scholar
  66. 66.
    D. Sanditov and V. Belomestnykh, Tech. Phys. 56, 1619 (2011).Google Scholar
  67. 67.
    M. Roufosse and P. Klemens, Phys. Rev. B 7, 5379 (1973).Google Scholar
  68. 68.
    E.J. Skoug, J.D. Cain, and D.T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).Google Scholar
  69. 69.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature 413, 597 (2001).Google Scholar
  70. 70.
    J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).Google Scholar
  71. 71.
    J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A 2, 4903 (2014).Google Scholar
  72. 72.
    S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Prog. Mater Sci. 58, 1443 (2013).Google Scholar
  73. 73.
    P. Patil and L. Kadam, Appl. Surf. Sci. 199, 211 (2002).Google Scholar
  74. 74.
    L. Cieniek, J. Kusinski, G. Petot-Ervas, and C. Petot, J. Microsc. 237, 329 (2010).MathSciNetGoogle Scholar
  75. 75.
    E. Sher, eds., Thermoelectric Properties of Transition Metal Oxides (NiO and TiO 2 ) in a Finely Dispersgated State. XX International Conference on Thermoelectrics, 2001. Proceedings ICT 2001 (Piscataway, NJ: IEEE, 2001).Google Scholar
  76. 76.
    K. Park, J. Seong, and G.H. Kim, J. Alloys Compd. 473, 423 (2009).Google Scholar
  77. 77.
    M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, and S. Kanzaki, Thin Solid Films 419, 213 (2002).Google Scholar
  78. 78.
    D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).Google Scholar
  79. 79.
    M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).Google Scholar
  80. 80.
    Y. Wang, Y. Sui, and W. Su, J. Appl. Phys. 104, 093703 (2008).Google Scholar
  81. 81.
    G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao, G. Wang, and Z. Ding, Solid State Ionics 171, 147 (2004).Google Scholar
  82. 82.
    L. Bocher, M. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).Google Scholar
  83. 83.
    L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, and A. Weidenkaff, Solid State Sci. 10, 496 (2008).Google Scholar
  84. 84.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).Google Scholar
  85. 85.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013).Google Scholar
  86. 86.
    W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).Google Scholar
  87. 87.
    P. Pichanusakorn and P. Bandaru, Mat. Sci. Eng. R 67, 19 (2010).Google Scholar
  88. 88.
    E. GroB, M. Riffel, and U. Stohrer, J. Mater. Res. 10, 35 (1995).Google Scholar
  89. 89.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).Google Scholar
  90. 90.
    K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).Google Scholar
  91. 91.
    A. Majumdar, Science 303, 777 (2004).Google Scholar
  92. 92.
    N. Mingo, Phys. Rev. B 68, 113308 (2003).Google Scholar
  93. 93.
    B. Abeles, Phys. Rev. 131, 1906 (1963).Google Scholar
  94. 94.
    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
  95. 95.
    H. Landolt-Bornstein, W. Axford, L.H. Aller, and P. Biermann, Numerical Data and Functional Relationships in Science and Technology: Group VI: Astronomy Astrophysics and Space Research (Berlin: Springer, 1982).Google Scholar
  96. 96.
    Z. Ovadyahu and Y. Imry, Phys. Rev. B 24, 7439 (1981).Google Scholar
  97. 97.
    M. Ahrens, R. Merkle, B. Rahmati, and J. Maier, Phys. B 393, 239 (2007).Google Scholar
  98. 98.
    A. Srivastava and N. Gaur, J. Phys.: Condens. Matter 21, 096001 (2009).Google Scholar
  99. 99.
    M.P. Zaitlin and A. Anderson, Phys. Rev. B 12, 4475 (1975).Google Scholar
  100. 100.
    T. Harman, P. Taylor, M. Walsh, and B. LaForge, Science 297, 2229 (2002).Google Scholar
  101. 101.
    T. Harman, M. Walsh, and G. Turner, J. Electron. Mater. 34, L19 (2005).Google Scholar
  102. 102.
    D.J. Paul, ICT - Energy Concepts Towards Zero-Power Information and Communication, ed. G. Fagas (Rijeka, Croatia: InTech Europe, 2014). doi: 10.5772/57092.
  103. 103.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, and J.R. Heath, Nature 451, 168 (2008).Google Scholar
  104. 104.
    S.N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nano Lett. 10, 2825 (2010).Google Scholar
  105. 105.
    J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
  106. 106.
    Q. Zhang, J. He, T. Zhu, S. Zhang, X. Zhao, and T. Tritt, Appl. Phys. Lett. 93, 102109 (2008).Google Scholar
  107. 107.
    B.A. Cook, M.J. Kramer, J.L. Harringa, M.K. Han, D.Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).Google Scholar
  108. 108.
    S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, Scripta Mater. 39, 1119 (1998).Google Scholar
  109. 109.
    G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. (2014).Google Scholar
  110. 110.
    Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).Google Scholar
  111. 111.
    Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).Google Scholar
  112. 112.
    S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).Google Scholar
  113. 113.
    Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Adv. Mater. 23, 5674 (2011).Google Scholar
  114. 114.
    Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, and K. Esfarjani, Energy Environ. Sci. 5, 5246 (2012).Google Scholar
  115. 115.
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).Google Scholar
  116. 116.
    S. Nemov and Y.I. Ravich, Phys. Usp. 41, 735 (1998).Google Scholar
  117. 117.
    H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater. 20, 326 (2008).Google Scholar
  118. 118.
    C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, and A. Majumdar, Appl. Phys. Lett. 92, 191911 (2008).Google Scholar
  119. 119.
    H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, and M. Hirano, Nat. Mater. 6, 129 (2007).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Guangkun Ren
    • 1
  • Jinle Lan
    • 1
  • Chengcheng Zeng
    • 1
  • Yaochun Liu
    • 1
  • Bin Zhan
    • 1
  • Sajid Butt
    • 1
  • Yuan-Hua Lin
    • 1
  • Ce-Wen Nan
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations