, Volume 67, Issue 1, pp 179–185 | Cite as

Concurrent Integration of Science-Based Mechanistic Relationships with Computational Thermodynamics and Kinetic Simulations for Strengthening Magnesium Alloys at Elevated Temperatures

  • Z. L. Bryan
  • M. V. Manuel


Integrated computational materials engineering approaches to alloy development leverage the hierarchical, interconnected nature of materials systems to rapidly optimize material performance. Particular emphasis is placed on the use of predictive models and simulation tools to elucidate fundamental relationships within the processing-structure-processing materials paradigm. For the current work, computational simulation results were used in combination with mechanistic, science-based models to assist alloy design. Two case studies are presented as illustrative examples that focus on high-temperature magnesium (Mg) alloy development. Solid solution strengthening potency and solute-based effects on creep rate were discussed in the first case study to guide strategies for solute selection in alloy development. This analysis was completed through the identification of composition-sensitive microstructural parameters that were subsequently evaluated in a predictive fashion. The second case study used computational thermo-kinetic simulations to evaluate Mg alloy precipitate systems for their ability to nucleate a high number density of coarsening-resistant particles. This nucleation and growth analysis was then applied to a Mg-Sn-Al alloy to highlight the utility of the current methodology in predicting multicomponent alloy precipitation behavior. This paper ultimately seeks to provide insight into an integrative approach that captures the important underlying material physics through relationships parameterized by descriptive thermodynamic and kinetic factors, where these factors can be readily calculated with a commercially available suite of computational tools in concert with accessible data in the literature.


Creep Rate Stack Fault Energy Solid Solution Strengthen Integrate Computational Material Engineer Solid Solution Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial assistance of the National Science Foundation under award number DMR-0845868 and the Department of Energy Office of Science Graduate Fellowship Program, administered by ORISE-ORAU (Contract #: DE-AC05-06OR23100). Additionally, Thermo-Calc Software is gratefully acknowledged for providing the thermodynamic database utilized in this study.


  1. 1.
    Office of Science and Technology Policy, Materials Genome Initiative for Global Competitiveness (Washington, DC: Office of Science and Technology Policy, 2011),
  2. 2.
    National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Academies Press, 2008).Google Scholar
  3. 3.
    G.B. Olson, J. Comput. Aided Mater. Des. 4, 143 (1998).CrossRefGoogle Scholar
  4. 4.
    M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008).CrossRefGoogle Scholar
  5. 5.
    H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications (Berlin: Springer, 2006).Google Scholar
  6. 6.
    M.O. Pekguleryuz, K.U. Kainer, and A.A. Kaya, Fundamentals of Magnesium Alloy Metallurgy (Philadelphia, PA: Woodhead Publishing Limited, 2013).CrossRefGoogle Scholar
  7. 7.
    C.E. Campbell and G.B. Olson, J. Comput. Aided Mater. Des. 7, 145 (2000).CrossRefGoogle Scholar
  8. 8.
    W. Xu and S. van der Zwaag, ISIJ Int. 51, 1005 (2011).CrossRefGoogle Scholar
  9. 9.
    R.J. Glamm, (Doctoral Dissertation, Northwestern University, 2011).Google Scholar
  10. 10.
    M. Pekguleryuz and M. Celikin, Int. Mater. Rev. 55, 197 (2010).CrossRefGoogle Scholar
  11. 11.
    M.O. Pekguleryuz, E. Baril, P. Labelle, and D. Argo, J. Adv. Mater. 35, 32 (2003).Google Scholar
  12. 12.
    A.A. Luo, Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
  13. 13.
    J.A. Yasi, L.G. Hector Jr, and D.R. Trinkle, Acta Mater. 58, 5704 (2010).CrossRefGoogle Scholar
  14. 14.
    J.-F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).CrossRefGoogle Scholar
  15. 15.
    J.E. Saal and C. Wolverton, Acta Mater. 60, 5151 (2012).CrossRefGoogle Scholar
  16. 16.
    D. Shin and C. Wolverton, Acta Mater. 58, 531 (2010).CrossRefGoogle Scholar
  17. 17.
    A.A. Luo, B.R. Powell, and A.K. Sachdev, Intermetallics 24, 22 (2012).CrossRefGoogle Scholar
  18. 18.
    E. Baril, P. Labelle, and M. Pekguleryuz, JOM 55, 34 (2003).CrossRefGoogle Scholar
  19. 19.
    B. Sundman, B. Jansson, and J.-O. Andersson, Calphad 9, 153 (1985).CrossRefGoogle Scholar
  20. 20.
    Thermo-Calc Software, TCS Mg-Based Alloys Database Version 2.0 (Stockholm, Sweden: Thermo-Calc Software).Google Scholar
  21. 21.
    J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, and B. Sundman, Calphad 26, 273 (2002).CrossRefGoogle Scholar
  22. 22.
    A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, J. Phase Equilib. 21, 269 (2000).CrossRefGoogle Scholar
  23. 23.
    Z.L. Bryan, P. Alieninov, I.S. Berglund, and M.V. Manuel, Calphad (in press). doi: 10.1016/j.calphad.2014.12.001.
  24. 24.
    S. Brennan, K. Bermudez, N.S. Kulkarni, and Y. Sohn, Metall. Mater. Trans. A 43A, 4043 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Brennan, A.P. Warren, K.R. Coffey, N. Kulkarni, P. Todd, M. Kilmov, and Y. Sohn, J. Phase Equilib. Diff. 33, 121 (2012).CrossRefGoogle Scholar
  26. 26.
    S. Brennan, A.P. Warren, K.R. Coffey, Y. Sohn, N. Kulkarni, and P. Todd, Magnesium Technology 2010, ed. S. R. Agnew, Neelameggham N.R., E.A. Nyberg and W.H. Sillekens (Seattle, WA: TMS 2010), pp. 537–538.Google Scholar
  27. 27.
    K. Kulkarni and A. Luo, J. Phase Equilib. Diff. 34, 104 (2013).CrossRefGoogle Scholar
  28. 28.
    S. Das, Y.-M. Kim, T. Ha, R. Gauvin, and I.-H. Jung, Metall. Mater. Trans. A 44, 2539 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Das, Y.-M. Kim, T. Ha, R. Gauvin, and I.-H. Jung, Metall. Mater. Trans. A 44, 2453 (2013).CrossRefGoogle Scholar
  30. 30.
    K. Lal, (Doctoral Dissertation, University of Paris, 1966).Google Scholar
  31. 31.
    S.K. Das, Y.-M. Kim, T.K. Ha, and I.-H. Jung, Calphad 42, 51 (2013).CrossRefGoogle Scholar
  32. 32.
    J. Čermák and I. Stloukal, Phys. Status Solidi A 203, 2386 (2006).CrossRefGoogle Scholar
  33. 33.
    S.-I. Fujikawa, J. Jpn. Inst. Light Met. 42, 822 (1992).CrossRefGoogle Scholar
  34. 34.
    J. Combronde and G. Brebec, Acta Metall. 20, 37 (1972).CrossRefGoogle Scholar
  35. 35.
    S. Ganeshan, L.G. Hector, and Z.K. Liu, Acta Mater. 59, 3214 (2011).CrossRefGoogle Scholar
  36. 36.
    C. Kammerer, N. Kulkarni, R. Warmack, and Y. Sohn, Magnesium Technology 2014, (Wiley Inc. 2014), pp 407–411.Google Scholar
  37. 37.
    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (Boston: PWS Publishing Company, 1991).Google Scholar
  38. 38.
    D. Hull and D.J. Bacon, Introduction to Dislocations (Oxford: Butterworth-Heinemann, 1984).Google Scholar
  39. 39.
    R.L. Fleischer, Acta Metall. 11, 203 (1963).CrossRefGoogle Scholar
  40. 40.
    R. Labusch, Phys. Status Solidi B 41, 659 (1970).CrossRefGoogle Scholar
  41. 41.
    F.A. Mohamed and T.G. Langdon, Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
  42. 42.
    B.K. Vaĭnshteĭn, Modern Crystallography: Structure of Crystals, Vol. 2 (Berlin: Springer, 2000).Google Scholar
  43. 43.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed. (New York: Taylor & Francis, 1992).CrossRefGoogle Scholar
  44. 44.
    I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
  45. 45.
    C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
  46. 46.
    C.S. Jayanth and P. Nash, J. Mater. Sci. 24, 3041 (1989).CrossRefGoogle Scholar
  47. 47.
    J.W. Martin, J.W. Martin, R.D. Doherty, and B. Cantor, Stability of Microstructure in Metallic Systems, (Cambridge University Press, 1997), pp. 242–243.Google Scholar
  48. 48.
    P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (Materials Park, OH: ASM International, 1991).Google Scholar
  49. 49.
    H. Baker and M.M. Avedesian, Magnesium and Magnesium Alloys: ASM Specialty Handbook (Materials Park: ASM International, 1999).Google Scholar
  50. 50.
    S. Chen, X. Dong, R. Ma, L. Zhang, H. Wang, and Z. Fan, Mater. Sci. Eng. A 551, 87 (2012).CrossRefGoogle Scholar
  51. 51.
    H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys (Materials Park: ASM International, 2010).Google Scholar
  52. 52.
    F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, and K. Hono, Mater. Sci. Eng. A 566, 22 (2013).CrossRefGoogle Scholar
  53. 53.
    C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, and C.R. Hutchinson, Philos. Mag. Lett. 86, 443 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations